کنترل کیفیت و بازرسی جوش مهندسی جوش - بازرسی جوش - کنترل کیفیت

ASME Stamps


Power Boilers - Section I

tubeSPower Boilers
pipeAPower Boiler Assemblies
welderEElectric Boilers
filler materialMMiniature Boilers
pressure testPPPressure Piping
burst testV**Power Boiler Safety Valves

Heating Boilers - Section IV

h stampH*Cast Iron Heating Boilers
editionHHeating Boilers, other
addendaHLWLined Potable Water Heaters
appendixHV**Heating Boilers Safety Valves

Pressure Vessels - Section VIII Division 1

interpretationUPressure Vessels
flangeUM*Miniature Vessels
loose flangeUV**Pressure Vessels Safety Valves
openingUD**Pressure Vessels Rupture Discs

Pressure Vessels - Section VIII Division 2

manholeU2Alternative Rules for Pressure Vessels

Pressure Vessels - Section VIII Division 3

asme codeU3High Pressure Vessels
inspection openingUV3**Safety Valves for High Pressure Vessels

Reinforced Plastic Vessels - Section X

u-stampRPFiber-Reinforced Plastic Pressure Vessels

Transport Tanks - Section XII

t stampTTransport Tanks
tv stampTVTranport Tanks Safety Valves
td stampTD**Transport Tanks Pressure Relief Devices

Nuclear Stamps

n stampNNuclear Components
npt stampNPTNuclear Partials
na stampNANuclear Installation and Shop Assembly
nv stampNVNuclear Safety and Safety Relief Valves
n3 stampN3Storage and Transport Containment of  Nuclear Fuel

Nuclear Certificates of Accreditation

 NSNuclear Supports
 QSCMaterial Organization

National Board Inspection Code

 RRepair and Alteration
 VRRepair of Safety Valves

  Components not subject to Authorized Inspection, annual audit by the AIA** Components not subject to Authorized Inspection, triennial audit by ASME

+ نوشته شده توسط امیدرضا خدابنده در سه شنبه بیست و پنجم خرداد 1389 و ساعت 9:51 |

The purpose of preheat:-

  1. Reduce the risk of hydrogen cracking
  2. Reduce the hardness of the weld heat affected zone
  3. Reduce shrinkage stresses during cooling and improve the distribution of residual stresses.

If preheat is locally applied it must extend to at least 75mm from the weld location and be preferably measured on the opposite face to the one being welded.

Background To Preheating

When hydrogen diffusing from a solidified weld meets a hard microstructure under a tensile stress a crack is likely!

Hydrogen cracking normally occurs in the heat affected zone where hard microstructure is to be found,  occasionally it can occur in weld metal.

This is a very searching gas that can be liberated by oil,  grease, rust etc. and water under the right conditions.

The greatest risk comes from hydrogen generated within the  arc from damp or contaminated welding consumables, mainly fluxes or electrode  coatings.

Contamination on the parent metal can also be a risk unless  the heat from the welding arc can drive it away.  Moisture from condensation on the parent  metal will normally be driven off by the heat from the arc before it can get into the weld pool. 

Hydrogen in the atmosphere is unlikely to penetrate the arc envelope unless welding is carried out in very damp and humid conditions.

A hydrogen crack can take anything from a few hours to 24 hours to occur. After 24 hours cracking is still possible but less likely, although there have been some reported cases of  cracking at 72 hours. It is therefore good practice to allow at least 48 hours before carrying out any NDE.

Hydrogen will eventually disperse from the parent metal,  within a few days at room temperature or a few hours if held at around 200°C.

Hydrogen cracking is only possible at room temperature, this is why it is also referred to as cold cracking

Parent Metal
A hydrogen crack requires a hard microstructure which is  created by a hardenable material subject to fast cooling  from 800°C to 500°C.  Cooling can be slowed down by:-

  • applying preheat, 
  • maintaining a high  interpass temperature,
  • increasing welding power and reducing travel speed.

The heat sink caused by the parent metal thickness and the  number of available paths the heat can take to escape, also influence cooling  rate.  (However once the heat sink  reaches a certain size further increases have a negligible effect on cooling  rate.).  This is why when determining preheat the term combined thickness is used, for a butt weld it is twice the thickness of the parent material and for a T fillet weld three times the thickness.

The hardening of a carbon manganese steel/low alloy  steel is influenced primarily by carbon content and to a lesser extent other  constituents such as manganese, chrome, silicone etc. 

The Carbon Equivalent is a formula used to express the harden-ability of a particular alloy steel in terms of an equivalent plain carbon steel.  Several such formula  exist, the one favoured for low alloy steel is the IIW formula:

CEIIW = C + Mn/6 + (Cr + Mo + V)/5 + (Ni +  Cu)/15

Current steel specification do not restrict or limit the Carbon Equivalent and as most steel specs permit a wide range of composition it is possible that one batch of steel may require pre-heat and another may not.

Very low sulphur ( < 0.015%) will increase hardening and special precautions are required when determining the minimum preheat level.  Additions of niobium also require special consideration.

For welds subject to high restraint more preheat is advisable (suggest, Increase CE by 0.3 or go down one hydrogen scale).


EN1011 Part 2   (English version available from British Standards)
This standard is highly recommended as it gives details on this preheat method and also includes methods covering fine grain and creep resisting steels. It also includes practical guidance on the avoidance of other cracking mechanisms.  Much of the data contained in this standard comes from TWI research tempered by practical experience from industry.  (It replaces BS5135)

Welding Steels Without Hydrogen Cracking. http://www.woodhead-publishing.com/ 
This book  is based on the original research work carried out by TWI.  It covers the avoidance of hydrogen cracking and preheat in great detail.  The preheat graphs tend to require a higher preheat than the equivalent ones in EN1011.

The Welding of Structural Steels Without Preheat    The Welding Journal  April 2000
A very informative article covering recent TWI research into welding low hardenability steels without preheat.  The article won the Lincoln arc welding foundation gold award. 

Preheat calculator          Lincoln arc welding foundation
A simple to use and inexpensive calculator.  It is based on practical experience and tends to be very conservative when compared with the TWI method.

Got To The Pre-Heat Calculator

More information on Preheat from the Lincoln Arc Foundation


+ نوشته شده توسط امیدرضا خدابنده در سه شنبه بیست و پنجم خرداد 1389 و ساعت 9:46 |
تنگستن كاربرد زيادي در توليد فولادهاي ابزار داشته و اخيرا در توليد فولادهاي پرآلياژي مقاوم در برابر حرارت نيز استفاده مي شوند. تنگستن بسيار سنگين بوده و وزن اتمي آن 184 و نقطه ذوب 3410 C دارد.ساختار كريستالي آن bcc است و در فولاد فريت زا و كاربيد زاي بسيار قوي است. سختي پذيري را افزايش مي دهد و كاربيدهاي مقاوم در برابر سايش ايجاد كرده و بالاخص از افت سختي در دماهاي بالا كه امري رايج در نوك ابزار است جلوگيري مي كند. در الكترودهاي جوشكاري نيز تنگستن اضافه مي شود تا سطح مقاوم در برابر سايش ايجاد نمايد

مقادیر کمی از تنگستن سختی پذیری آستنیت را شدیدا افزایش داده و از طریق تشکیل محلول جامد فریت را تا حد متوسطی افزایش می دهد.

تمایل تنگستن به ترکیب با کربن بسیار زیاد بوده و کاربید آن خیلی سخت و مقاوم به سایش است. فولادهای تنگستن دار با سختی ثانویه در برابر تمپر مقاوم بوده و از اینرو مقاومت به سایشی را ارتقا ء داده ودر دماهای بالا دارای استحکام زیادی خواهند بود.

در فولادها، تنگستن کاربیدهای کمپلکس Fe4W3C یا Fe4W2C تشکیل می دهد و در برخی مواقع ، این کاربید ها به کاربیدهای ساده WC تجزیه می شوند.انحلال کاربیدهای تنگستن در آستنیت بسیار کشکل بوده و برای رسیدن به تعادل در فولادهای تنگستن به زمان آستنیته کردن بیشتری نیاز است.این انحلال کم کاربیدها مربوط به اندازه دانه کوچک فولادهای تنگستن دار بوده که متاثر از اثر محدود کنندگی رشد دانه توسط کاربید های حل نشده است.

تنگستن همانند فریت زاهای دیگر ، دمای یوتکتوئید را افزایش داده و درصد کربن یوتکتوئید را می کاهد و در نتیجه مقدار کاربید آزاد فولاد را در همان درصد کربن مشابه افزایش می دهد . این افزایش درصد کاربید آزاد سبب افزایش مقاومت سایش فولادهای تنگستن دار می شود.

تنگستن سختی و استحکام کششی فولادهای کربنی ساده و پر کربن را افزایش می دهد ولی بندرت به تنهایی در فولادها استفاده می شوند چراکه می توان با کمک از عناصر آلیاژی ارزان دیگر برای رسیدن به خواص مورد نظر استفاده کرد.

در دماهای کوئنچ کم که اندازه دانه کم بدست می آید، فولادهای تنگستن در مقایسه با فولادهای کربنی ساده از سختی پذیری کمی با درصد کربن مشابه برخوردار خواهند بود ولی با افزایش درصد زمان و دمای آستنیته کردن بدلیل انحلال زیاد کاربید ها ، سختی پذیری آنها در مقایسه با فولادهای ساده کربنی افزایش می یابد.

در تولید فولادهای ابزار بالاخص فولادهای ابزار تند بر ، یکی از عناصر اصلی تنگستن است.تنگستن در فولادهای تند بر زمینه ای ایجاد می کند که در حین تمپر نرم نمی شود و کاربیدها بسیار سخت و مقاوم به سایش می باشند.این مقاومت به تمپر زمینه سبب شده که استحکام در دمای بالا و چقرمگی در سختی معین خوبی داشته باشد.این فاکتور مهمی است چرا که توانایی برش و تغییر شکل ابزار تندبر و قالب کار گرم بستگی به سختی و استحکام در دمای کاری سطوح دارد.تنش های داخلی که در حین کوئنچ فولادهای تنگستن دار ایجاد می شود ، در دماهای بالا آزاد می شوند. این نوع آزاد شدن تنش بدون کاهش سختی بوده فلذا قطعه می تواند تنش های کاری را تحمل کند.در بیشتر عملیات های برش کاری از فولادهای تند بر استفاده می شود.یکی از این فولادها دارای ترکیب 18%W,4%Cr,1% V,0.7% C می باشد.افزایش درصد تنگستن بیشتر از این مقدار سبب زیاد شدن مقاومت سایشی شده ولی چقرمگی را می کاهد. در درصدهای کمتر از 18% ، مقاومت سایشی کاهش یافته و حساسیت به رشد دانه در دماهای کوئنچ بالا را می افزاید.

خواص برشکاری خوب با افزایش همزمان درصد کربن و وانادیم این نوع فولادها بدست می آید.به عنوان مثال فولاد با 1.2% C,14%W,4%Cr,4.5%V بهتر از فولاد 18-4-1 برای مته ها می باشد.

در برخی ز فولادهای تند بر می توان بجای دو قسمت تنگستن از یک قسمت مولیبدن استفاده کرد.با این حال خواص برشکاری این فولاد کاهش می یابد. فولاد 6%W,6%Mo, در مقایسه با فولاد های تنگستنی معمولی براحتی دکربوریزه می شود.فولاد جایگزین دیگر 6%W,5%Mo,4%Cr,2%V بوده که برای بهینه کردن خواص برش این فولاد ، درصد کربن را زیاد کرده اند.ترکیب این فولاد 1.2%C,6%W,4%Cr,4.5%Mo,4%V است.

نوع دیگر از فولاد ابزار تنگستن که در قالبهای گرم کار استفاده می شود، 10%W,3%Cr,0.30%V,0.30%C است.تنگستن موجود در ترکیب فولاد ، مقاومت به تمپر را افزوده و حتی در دماهای بالا تر از دمای تمپر معمول ، افت سختی قابل ملاحظه نخواهد بود.

با اضافه کردن 5% کبالت به فولاد تنگستن ، فولاد بسیار تند بر بدست می آید که باز می توان از دماهای آبکاری بالا استفاده کرد. در نتیجه کاربیدهای تنگستن زیادی حل شده و سختی پذیری بالایی حاصل می شود.

فولاد ابزار حاوی 5%W,1.3% C بسیار سختی بوده وتیزی لبه برش را حفظ می کند. این فولاد در ابزار برش ، برشکاری مواد سخت و برای قالبهای کشش استفاده می شود.

جنس فولاد اسکنه از فولاد با 1.0-2.5 % W بوده که اندازه دانه را اصلاح کرده و مقاومت سایش را بهبود می بخشد.

چگالی فولادهای کربنی با افزودن تنگستن زیاد شده و فولادهای تنگستن پایداری مغناطیسی بیشتری از خود در مقایسه با فولادهای کربنی ساده نشان می دهند.فولاد پر کربن با تنگستن 6% در شرایط سخت شده در مغناطیس های دایمی استفاده می شود.تنگستن بدلیل نگهداری آستنیت در حین کوئنچ ، باعث تشکیل ذرات مغناطیس با توزیع بحرانی می شود.نوعی از این فولاد مغناطیس تنگستن دار ترکیب 6%W,0.6%Cr,0.7%C دارد.

تنگستن در صنایع مواد سخت بصورت کاربید تنگستن استفاده می شود که یکی از اجزای اصلی در ابزارهای برش کاربیدی سینتر شده است.بدلیل تولید مشکل این کاربیدها، کاربیدهای سینتر شده بندرت در مقاطع بزرگتر از 2 اینچ مربع تولید می شوند.تیغه های کاربیدی یا بطور مکانیکی یا با لحیم کاری به فولاد ابزار کربنی متوسط یا چدنی متصل شده و ابزار برش را تشکیل می دهند.تیغه های کاربید تنگستن در ابزار های برش دستگاه تراش، مته ها و برقو ها بکار می روند.هم چنین در گشش سیم از قالبهای کاربید تنگستن بسیار سخت استفاده می شود.

اگر به ترکیب فولاد زنگ نزن 18/8 تنکستن اضافه شود به علت ماهیت کاربید زایی قوی آن ، سعی دارد از خوردگی بین دانه ای یا فاسد شدن جوش جلوگیری کند.تنگستن به فولادهای مقاوم به حرارت و نیکل-کروم اضافه می شود تا استحکام در دماهای بالا را افزایش دهد.یکی از این فولادها شامل 23%Cr,12%Ni,3% W است.

تنگستن بندرت به چدن اضافه می شود با این وجود معمولا درصدی در قراضه هایی از جنس فولادهای تند بر در ترکیب دیده می شود
گوگرد ماده بی بو و بدون مزه است که در طبیعت بیشتر به صورت ماده جامد زرد رنگ است که البته کانی های سولفیدی و سولفاتی نیز به وفور دیده می شوند.
گوگرد یکی از عناصر اصلی در ساختمان سلول زنده است.گوگرد یک منبع غذایی شیمیایی برای برخی از ارگان ها می تواند باشد:بعضی از باکتری ها از سولفید هیدروژن بجای آب به عنوان الکترون ده در فرآیندهای شبیه فوتوسنتز استفاده می کنند.گوگرد غیرآلی بخشی از کلاسترهای آهن-گوگرد را تشکیل می دهد و گوگرد یک لیگاند(Ligand) اتصالی در محل CuA در اکسیدایز سیتوکروم سی می باشد که این آخری ماده اصلی در استفاده از اکسیژن درتمام زندگی هوازی می باشد.
در نباتات و حیوانات،سیستئن (cysteine) آمینو اسید و متونین(Methionine) شامل گوگرد می باشند.هوموسیستئن و تاورین(Taurine) از انواع اسیدهای گوگرد داری هستند که ساختار مشابهی داشته ولی به وسیله DNA کد گذاری نمی شوند و بخشی از ساختار اولیه پروتئین محسوب نمی شوند.
پیوندهای دی سولفیدی (S-S) که بین اجزای سیستئن در زنجیرهای پپتید تشکیل می شوند،در ساختار پروتئین بسیار مهم هستند.این پیوندهای کووالانت قوی بین زنجیرهای پپتید باعث می شوند که پروتئین ها از چقرمگی و جهندگی بالایی برخوردار باشد.به عنوان مثال،استحکام بالای پرها و مو به دلیل مقدار بالای اتصال S-S و هم چنین مقدار زیاد سیستئن و گوگرد است.
گوگرد از زمانهای قدیم مورد استفاده بوده و در کتب عهد قدیم به کرات بدان اشاره شده است.احتمالا گوگرد از کلمه عربی sufra به معنی زرد گرفته شده است که ناشی از رنگ درخشانی است که در طبیعت از خود نشان می دهد،با این وجود نام سانسکریت گوگرد بنام sulvari است که به معنای دشمن مس می باشد.
ترجمه های انگلیسی از کتب عهد قدیم،از گوگرد بنام Brimstone یادکرده است که نشـات گرفته از خطابه آتش و گوگرد (Fire and brimstone) بوده که در آن مستمعان به حالت لعن جاوید و ازلی باقی می ماندند بطوریکه منتظر بی اعتقادی و عدم پشیمانی بودند.در این بخش از کتب عهد قدیم،Hell به بوی گوگرد اشاره می کند،که در بالا گفته شد گوگرد بی بو است.بوی گوگرد معمولا مشابه بوی سولفید هیدروژنی است که از تخم مرغ گندیده به دماغ می رسد.سوختن گوگرد دی اکسید گوگرد تولید می نماید که بویی شبیه سوختن کبریت دارد.
هومر در قرن هشتم قبل از میلاد و نیز 424 م ق از گوگرد عامل جلوگیری از طاعون نام می برد و بوئیتا (Boeotia) دیواره های شهر را با به آتش کشیدن مخلوطی از زغال سنگ،گوگرد و قیرخراب نمود.در قرن دوازدهم،چینی ها تفنگی را اختراع کردند که نیروی پرتابی آن از مخلوط نیتزات پتاسیم (KNO3) ،کربن و گوگرد تامین می شد.در اواخر سال 1770 میلادی ، آنتوین لاوزیه (Antoine Lavoisier) موفق شد که گوگرد را به عنوان یک عنصر به جامعه علمی معرفی نماید.در 1867 میلادی،گوگرد در رسوبات زیرزمینی در لویزیانا و تگزاس کشف شد.
گوگرد عنصری معمولا در نواحی آتش فشانی یافت می شود.هم چنین رسوبات گوگرد عنصری در خلیج مکزیک،اروپای شرقی و آسیای غربی وجوددارد.اعتقاد بر این است که گوگرد موجوددر این رسوبات از واکنش باکتریایی بی هوازی بر روی کانی های سولفاتی بالاخص سنگ گچ بدست آمده است.
سلنیم عنصر شیمیایی بوده که در طبیعت به شکل آزاد پیدا نمی شود و معمولا در مقادیر زیادش سمی بوده ولی مقدار کم آن در در برخی از آنزیم ها بسیار موثر است.
سلنــــــــــیم از واژه یونانی selene به معنی ماه گرفته شده است و در سال 1817 توسط جـــــــــونز یاکــــــوب برزیلیوس (Jons Jakob Berzelius) کشف شد.رشد استفاده از سلنیم به لحاظ تاریخی حالت یکنواخت و متناسب با کاربردهای جدید بوده که می توان به ترکیبات کائوچو،عناصر آلیاژی در فولاد و یکسوکننده های سلنیم اشاره نمود.در سال 1970،سلنیم در یکسوکننده ها جایگزین سیلیس شدند ولی کاربرد اصلی آن در هادی های حساس به نور در صفحات ساده کپی است.در طی سال 1980، استفاده از سلنیم به عنوان هادی حساس به نور در این صفحات نیز رو به کاهش رفت.در حال حاضر،استفاده گسترده از سلنیم در صنایع شیشه سازی و رنگ دانه ها می باشد.
در سال 1996،تحقیقات ادامه دار نشان داد که رابطه مستقیمی بین مکمل های سلنیم و جلوگیری از حمله قلبی وجود دارد.در اواخر سال 1990،استفاده از سلنیم به عنوان یک نوع افزودنی به لوله های برنجی برای برآورده ساختن استانداردهای زیست محیطی بدون سرب از اهمیت قابل توجهی برخوردار شد.
با وجود اینکه مقادیر زیاد سلنیم سمی است،ولی یکی از ریزمغذی های اصلی در حالت های مختلف حیات است.سلنیم یکی از اجزای اصلی آمینو اسیدهای کمیاب سلنوسیستئن (selenocysteine) و سلنومتوئین(selenomethionine) است.در انسانها،سلنیم ماده ریزمغذی است که به عنوان کوفاکتور برای احیای آنزیم های آنتی اکسیدان مثل پروکسیدازهای گلوتاتئیون (Glutathione peroxidases) یا ردوکتازتیرودوکسین(Thioredoxin reductase) عمل می کند.هم چنین سلنیم در عملکرد غده تیروئید به عنوان یک کوفاکتور برای هورمون تیروئید نقش اصلی ایفاء می کند.
همانطوریکه در بالا بدان اشاره شد،مقدار زیاد سلنیم سمی است. مقدار بیش از حد بالایی پذیرش مجاز بیشتر از 400 میکروگرم در هر روز می تواند موجب سلنوسیس (Selenosis) شود.علایم این بیماری شامل بوی سیر در دم بیمار،اختلالات معده ای،ریزش مو،پوسته پوسته شدن ناخن ها،خستگی، کج خلقی و حملات عصبی می باشد.مقدار خیلی زیادی آن می تواند منجر به تسمع جگر و ورم ریوی و در نهایت مرگ می شود.
آنچه که در مورد سلنیم جالب است که بدان اشاره شود، رابطه آن با گسترش بیماری HIV است.تحقیقات زمین شناسی در مناطقی که بیماری ایدز در آن گسترش یافته است، و مقایسه آن با مناطقی که بیماری ایدز در آنها دیده نشده است،نشان دهنده این مطلب مهم است که در خاک مناطقی که ایدز در آنجا شیوع یافته است،حاوی مقادیر کمتری از عنصر سلنیم است.به عنوان مثال،درصد شیوع بیماری ایدز در مناطق پایین تر از آفریقای شمالی که سلنیم کمتری در خاک آن اندازه گیری شده است،بالا است در حالیکه در سنگال این درصد خیلی پایین تر است .خاک سنگال درصد بالاتری از عنصر سلنیم را دارد.
اما در فولاد گوگرد وسلنيم رفتار مشابهي در دارند.گوگرد در تركيب هر فولادي وجود دارد ولي سلنيم بطور عمدي به فولاد افزوده مي شود.وزن اتمي گوگرد32 با نقطه ذوب 119 C ، وزن اتمي سلنيم 79 با دماي ذوب 217 C است.هر دو قابليت يكساني در فولاد دارند و به علت كم بودن نقطه جوش ، در مذاب پايداري زيادي ندارند.
مشكل اصلي فولادسازان مربوط به پديده ترك برداري گرم يا سرخ شكنندگي است. فلذا سعي مي كنند تا حد امكان در صد گوگرد را كمتر كنند. گوگرد با آهن تركيب شده و تشكيل FeS ميدهد كه داراي نقطه ذوب كمتري است.FeS با آهن يوتكتيكي تشكيل مي دهد كه از نقطه ذوب پايينتري تا 988 C برخوردار است.اين تركيب در دماهاي بالا بصورت مذاب در آمده ودرمرزدانه ها تجمع مي كندفلذا باعث ترك برداري گرم يا سرخ شكنندگي Hot cracking يا Hot Shortness مي شود.شكل آخالهاي سولفيد آهن در شمش ها كروي بوده و در مقاطع كار شده كشيده ودراز است.اين سبب مي شود خواص قطعه آنيزوتروپ شود.همانطوريكه قبلا اشاره شد،Mn تمايل زيادي به تركيب با گوگرد و تشكيل سولفيد منگنز دارد.بنابر اين، از اين خاصيت براي حذف گوگرد استفاده مي شود.با اين حال درصد بسيار کمی FeSتشكيل مي شود كه قابليت انحلال در MnS را دارد.با اين وجود تاثيري بر روي دماي ذوب سولفيد منگنز ندارد.ميزان منگنز اضافه شده تقريبا چهار برابر درصد گوگرد است. بيشتر فولادهاي كم آلياژي و كربني حداكثر درصد گوگرد 0.04% دارند.
وجود درصد زياد MnS بر كارآيي فولاد تاثير منفي دارد.عليرغم اين موضوع، در فولادهاي خوش تراش وجود گوگرد عامل مهمي است.در واقع ، يكي از راههاي افزايش قابليت ماشينكاري ،اضافه كردن گوگرد به تركـــيب فولاد است.بيشتر اين نوع فولادها،0.10-0.30 % گوگرد دارند.وقتي ابزار برش روي سطح قطعه كار مي كنند،به علت وجود MnS طول پليسه ها كوتاهتر مي شوند و نقش روانكار را نيز ايفا مي كنند و در نتيجه صافي سطح بيشتر مي شود.
شكل،اندازه و توزيع نامطلوب آخالهاي غير فلزي تاثير نامطلوبي بر روي خواص فولاد دارند.آخالهاي غير فلزي كشيده شده قابليت كار سرد فولاد ورق در كشش عميق را مي كاهد و چقرمگي شكست را شديدا كاهش مي دهد.خواص فولاد را آنيزوتروپ مي كند وحساسيت به پارگي داغ را افزايش مي دهد.وجود چنين مشكلات براي فولادسازان، افزودن عناصري مثل كلسيم،منيزيم،زيركنيم و عناصر نادر خاكي (سديم) به ذوب را در پي داشته است.در اين روش مقدار گوگرد پس ماند به 0.001و 0.005 درصدنيز مي رسد.
در جوشکاری فولادهای خوش تراش که گوگرد زیادی دارند ،وجود سولفیدها بر جوشکاری قوسی بسیار مضر بوده و در هنگام رسوب فلز جوش از الکترودهای فولادهای نرم ، حفره و ترک تشکیل می شود.ولی استفاده از الکترودهای مصرفی با هیدروژن پایین ، نتایج قابل قبولی را در پی دارد.نسبت آهک به سیلیس این الکترود ها در حدی نگه داشته می شوند که تاثیر مخربی بر روی نتایج جوشکاری نداشته باشند.
در چدنها ، منابع متعددی برای حضور گوگرد در ترکیب موجودند.در صورتیکه منگنزی وجود نداشته باشد،گوگرد در ساختار بصورت سولفید های آهن با شکل آخالهای قهوه ای خاکستری ظاهر می شوند ولی با افزودن منگنز ، به لحاظ تمایل ترجیحی به ترکیب با گوگرد،سولفید مگنز تشکیل خواهد شد.میزان منگنز طبیعتا باید بیشتر باشد و از فرمول تجربی زیر استفاده می شود:
%Mn = 1.7 * %S+0.3
اگر دمای ریخته گری پایین باشد، مقادیر اضافی اکسید منگنز بصورت عیوب حفره ای در قطعه د رمی آید.در درصدهای بالاتر از 0.18 % گوگرد، سختی چدنهای خاکستری را افزایش می دهد ولی بر ماشینکاری چدنهای خاکستری تاثیر منفی دارد
سیلیس در طبیعت به شکل آزاد نیست بلکه بیشتر به صورت دی اکسید سیلیس خالص و سیلیکات ها می باشد.کانی های حاوی سیلیس را می توان در خاک رس،ماسه و انواع مختلف گرانیت ها و سنگ ها پیدا کرد.سیلیس قسمت اصلی نیمه هادی ها بوده و نیز در شکل سیلیکات و سیلیکا در شیشه ها ،سیمان و سرامیک کاربرد فراوانی دارد.
سیلیس در حالت بلوری به رنگ خاکستری تار بوده و جلای فلزی دارد.با اینکه سیلیس یک عنصر نسبتا خنثی است،ولی با هالوژن ها و مواد قلیایی واکنش می دهد و بیشتر اسید ها بجز ترکیبی از اسید نیتریک و اسید هیدروفلوریک بر آن تاثیری ندارند.سیلیس عنصری بیشتر از 95 درصد از طول موج های امواح ماورای بنفش را انتقال میدهد.
سیلیس از واژه لاتین silex به معنای سنگ چخماق گرفته شده است و اولین بار توسط آنتوین لاوازیه در سال 1787 شناسایی شد و سپس به اشتباه توسط همفری دوی( Humphry Davy) در سال 1800 به عنوان یک ترکیب طبقه بندی شد.در سال 1811،گی لوساک (Gay-Lussac) و تنارد(Thenard) توانستند که سیلیس آمورف و ناخالص را از حرارت دادن پتاسیم در کنار تترافلوراید سیلیس بدست آورند.در سال 1824 میلادی،برزیلیوس سیلیس آمورف را تقریبا با روش مشابه با روش لوساک بدست آورد و سپس با شستن مکرر آن توانست به سیلیس با خلوص بالا دست یابد.
با توجه به اینکه سیلیس با کربن شباهت دارد ،برخی این احتمال را می دهند که حیاتی براساس سیلیس وجوددارد .اما این بیشتر به یک داستان تخیلی و علمی شباهت دارد. افترای اصلی که درمورد حیات پایه سلیس داده می شود،این است که سیلیس برخلاف کربن تمایل ندارد که پیوندهای دوتایی و سه تایی تشکیل دهد.
با وجوداینکه هنوز حیاتی بر پایه سیلیس پیدا نشده است،ولی کانی های سیلیس وجود دارد که کاربردهای خاصی دارند.بعضی از باکتریها و اشکال دیگر حیات مثل رادیولاریا پروتوزا(Radiolaria ptotoza) اسکلت دی اکسید سیلیسی دارند.این نوع از حیات با نام سیلیکای بیوژنیک معروف است.باکتریهای سیلیکاتی از سیلیس در متابولیسم استفاده می کنند.
زندگی که ما بر روی زمین می شناسیم،بر اساس بیوشیمی سیلیسی گسترش نیافته است.دلیل اصلی این ادعا این است که حیات در روی زمین بستگی به چرخه کربنی دارد؛موجودات اوتوتروفیک(موجوداتی که غذایشان را خود تولیدمی کنند مثل گیاهان) (autotrophic) از دی اکسید کربن برای سنتز ترکیبات آلی با کربن استفاده می کنند و موجودات هتروتروفیک (موجوادتی که غذایشان را از موجودات دیگر تامین می کنند مثل حیوانات)(Heterotrophic) از این ترکیبات انرژی و دی اکسید کربن تولیدمی کنند.حال اگر سیلیس بتواند جایگزین کربن شود،در این صورت است که به چرخه سیلیس نیاز خواهد بود.البته دی اکسید سیلیس در سیستم های آبی رسوب می کند و نمی تواند در دستگاه های حیاتی انتقال یابد.

سیلیس را می توان در ترکیب همه فولادها دید.علت اينست كه كانه هاي آهن حاوي درصدهايي از سيليس است و نيز در حين فولادسازي ،از جداره هاي نسوز كوره وارد ذوب آهن مي شود.سيليس اكسيژن زداي قوي است و آخالهاي اكسيدي را نيز حذف مي كند.
وزن اتمي سيليس 28 و نقطه ذوبش 1427 C است.ساختار كريستالي آن مكعبي الماسي است. سيليس فلز نيست بلكه يك شبه فلز metalloid است . سيليس در آهن مذاب بهر نسبتي حل مي شود. ولي در آهن جامد حداكثر تا 15 % حل مي شود.سيليس دماي استحاله دلتا به آستنيت را كاسته و از طرفي دماي استحاله فريت به آستنيت را افزايش مي دهد و منطقه پايداري آستنيت را مي كاهد. در واقع فريت زاي قوي است.
سيليس به عنوان عنصر آلياژي در مقادير بيش از 0.3 % اثرات مفيدي دارد. استحكام فريت را افزايش مي دهد و سختي پذيري را زياد مي كند. وجود سيليس در فولادهاي الكتريكي كه جهت گيري دانه ها مطرح است بسيار مهم است. هم چنين سياليت ذوب را نيزافزايش مي دهد.
حضور سيليس ، راسب شدن گرافيت را تشويق ميكند و مقاومت سايشي را افزايش مي دهد. به علت افزايش استحكام تسليم ، عنصر اصلي در فولادهاي فنر است.به علت افزايش مقاومت در برابر اكسيداسيون و پوسته دار شدن در فولادهاي مقاوم در برابر حرارت استفاده مي شود.براي اينكه مقاومتشان در محيط هاي اسيدي نيز زياد شود، درصد سيليس تا 12% بايد باشد كه در اينصورت فقط باريخته گري قابل توليد بوده و براي رسيدن به ابعاد فقط سنگ زني قابل انجام است.
در مقادیر بالای سیلیس ، سختی پذیری و استحکام فولاد افزایش می یابد ولی این افزایش همراه با کاهش داکتیلیتی و انرژی ضربه است.از اینرو درصد سیلیس در اکثر فولادها به 0.35 % محدود می شود.در فولادهای کربن متوسط و پرکربن ، باافزودن سیلیس سختی پذیری زیاد می شود. درصد کربنی که یوتکتیک در آن رخ می دهد کاسته می شود و دمای آستنیته را می افزاید.افزودن سیلیس به فولادهای کوئنچ و تمپر با 0.5 % کربن ، سختی حاصل از سخت کاری و فریت حاوی کاربید را افزایش می دهد.
در فولادهای فنر کربنی و سیلیس – منگنز دار ، میزان سیلیس بیش از حد طبیعی است و در محدوده1.5 -2 % می باشد و درصد منگنز بین 0.6-1.0 % است.با ازدیاد درصد سیلیس ، حساسیت به تردی تمپر افزایش می یابد. هرچند ، منگنز این حساسیت را بیشتر از سیلیس افزایش می دهد ولی در فولادهای سیلیس – منگنز دار حاوی 1% منگنز، اگر درصد سیلیس بین 1.5-2 درصد باشد ، تردی تمپر بسیار جدی خواهد بود.اگر فولاد تنها0.6 % منگنز داشته باشد سیلیس تا3 % می تواند در ترکیب فولاد حضور داشته باشد بدون اینکه بر افزایش تردی تمپر تاثیر جدی داشته باشد.
سیلیس در فولادهای مقاوم به حرارت ، نیکل-کروم ، کروم دار و کروم-تنگستن برای افزایش مقامت به اکسیداسیون در دماهای بالا بکار می رود.فولادهای شیر کروم-سیلیس تا 3.75 % سیلیس و فولادهای پرنیکل –کروم-تنگستن در محدوده 1-2.5 % سیلیس دارند. این چنین فولادهایی در شیرهای اگزوز موتورهای درون سوز استفاده می شود.
افزودن تقریبا 2 % سیلیس به فولادهای زنگ نزن 18/8 مقاومت به پوسته برداری در دمای 980 C را افزوده و فولادهای تجارتی از این نوع در حدود 2-3 % سیلیس دارند.
سیلیس در فولاد با تشکیل محلول جامد جانشینی باعث می شود کربن بصورت گرافیت رسوب کند. فلذا چنین شکلی از کربن در حین نورد گرم بصورت لایه دکربوریزه شده حذف خواهد شد.بنابر این میزان کربن تا حد امکان کم نگهداشته می شود تا میزان اکسید و کربنی که خواص مغناطیسی فولاد را کاهش می دهد ، کمتر شود.از اینرو ورقهای فولاد سیلیس دار که 2.5-5 % سیلیس دارند، افت جریان ادی و هیسترزیس کمتری در مقایسه با آهن دارند. فلذا در میدان جریان مستقیم، قابلیت نفوذ مغناطیس در آنها برای اکثر کاربردها مفید ومناسب بوده که باعث شده در صنایع الکتریکی کاربرد زیادی پیدا کرده است.
ورقهای الکتریکی از فولادهای سیلیس دار 4-4.75 % سیلیس ساخته می شوند. چون در درصدهای سیلیس بالای 2.5 % آستنیتی وجود ندارد فلذا می توان آنها را عملیات حرارتی کرد.این عملیات تنها برای بازیابی و آزادسازی کرنش های مکانیکی و نفوذ ناخالصی ها و آخالها و رشد کریستالهای بزرگ اکوکسی بزرگ و به دنبال آن بهبود خواص مغناطیسی بکار می رود.یک روش برای آنیل ، عملیات حرارتی فولاد در دمای 800-1000 C در شرایط احیایی و سپس آهسته سرد کردن است.در روش دیگر که برای تولید ورقهای با جهت گیری دانه ای استفاده می شود، شامل پوشش دادن اولیه ورقهای نورد گرم شده و سپس نورد سرد با پودرهای دیرگداز و به دنبال آن آنیل در دمای 1200 C بمدت60 ساعت در اتمسفر هیدروژن دار می باشد. با این عملیات درصد زیادی از دانه ها در راستای ترجیحی جهت دار می شود. ورق با چنین شبکه فریت جهت دار و یکنواخت باعث افزایش راندمان ترانسفورماتور و کاهش افت وات می شود.در عوض مقدار گرمای تولید شده در طی کار ترانسفورماتور را کاسته و هزینه اولیه را کم کرده و سیستم خنک کن دستگاه را ساده تر کرده است.
سیلیس در چدن ها همیشه وجود داشته و یک عنصر گرافیت زاست و پایداری کاربیدهای یوتکتیک و پرلیتی را کاهش می دهد.درصد سیلیس در چدنهای سفید بسیار کم بوده ولی در چدنهای خاکستری حداقل تا 1.5 درصد نیز وجود دارد.
مس فلزی با رنگ مایل به قرمز است که رسانایی حرارتی و الکتریکی بالایی دارد.آلیاژهای مختلف مس به نامهای متفاوتی شناخته می شوند.برنز ها آلیاژهای مس و قلع می باشند.برنج ها آلیاژهای مس و روی هستند.فلز مونل که به نام کوپرونیکل نیز معروف هستند،آلیاژی از مس و نیکل است.با وجود اینکه معمولا آلیاژ برنز به آلیاژ مس و قلع اطلاق می شوند،ولی تبدیل به یک واژه کلی شده است مثل برنز آلومینوم،برنز منگنز .
مصری ها به این نکته پی برده بودند که افزودن مقدار کمی قلع سبب می شود ریخته گری فلز راحت تر شود.استفاده از مس در چین باستان به2000 م ق بر میگردد.در آن دوران برنزهای با کیفیت عالی می ساختند.توجه کنید که این تاریخ ها بیشتر تحت تاثیر جنگ ها پیروزیها بودند.در اروپا،تبرهای با نوک مسی پیدا شده اند که به تاریخ 3200 م ق بر میگردند که خلوص 99.7 درصد داشتند.برنجها،آلیاژ مس و روی،ابتدا در یونان شناخته شدند ولی نخست توسط رومی ها به طور وسیعی استفاده شدند.
صنایع دستی در سومر به 3000 م ق بر میگردند و صنایع دستی پیدا شده در مصر به همان تاریخ مربوط می شوند.در یکی از هرم ها ،سیستم لوله کشی مسی کشف شده است که قدمتش مربوط به 5000 م ق است.
در یونانی،واژه chalkos به معنای فلز است.در یونان و روم،مس منبع بسیار مهمی برای آنها بود.در روم،واژه aeo Cyprium همان معنی را می داد.به تدریج این واژه ساده تر شد و به صورت copper وارد زبان انگلیسی شد. در اسطوره شناسی،مس همراه الهه و رب النوع عشق و ونوس بود. در علم کیمیاگری،علامت فلز مس مشابه سیاره ونوس بود.
مس را می توان جزو اندک فلزاتی دانست که در طبیعت به صورت غیرترکیبی وجوددارد.این فلز یکی از ارکان اصلی تمدن بوده و تاریخچه آن به 10000 سال قبل می رسد.در شمال عراق یک طناب مسی پیدا شده است که قدمتش به 8700 م ق می رسد.در سال 5000 م ق ،نشانه های مبنی بر ذوب و تصفیه مس از ترکیبات ساده مس دار مثل مالاکیت یا آزوریت یافت شده است.در میان مکان های باستانی در آناتولیا،چاتال هویوک (Çatal HöyüK) در تقریبا 6000 م ق ابزاری از صنایع دستی مسی پیدا شده است که البته در آنها مسی ذوب نشده بود اما در Can Hasan تقریبا در 5000 م ق ابزاری پیدا شده اند که از مس ذوب شده تولید شده بودند.
ذوب مس در نقاط مختلف جهان بطور مستقل گسترش یافته اند.علاوه بر گسترش صنایع مسی در آناتولیا در 5000 م ق ،این صنایع در چین قبل از 2800 م ق ،در آمریکای مرکزی در 600 میلادی و در آفریقای غربی در 900 میلادی نیز گسترش یافته بود.
مس در همه گیاهان و حیوانات وجود دارد.مس در جریان خون بر روی پروتئین پلاسمایی به نام سرول پلاسمین(Ceruloplasmin) حرکت می کند. وقتی مس برای اولین بار در روه جذب می شود،به کبد انتقال داده می شود.در بسیاری از آنزیم ها مس وجود دارد که شامل مراکز مسی سیتوکروم سی اکسیداز و آنزیم دیسموتاز سوپراکسید می باشد.علاوه بر نقش آنزیمی؛مس برای انتقال بیولوژیکی الکترون نیز استفاده می شود.پروتئین های مس آبی که از انتقال الکترون رسوب می نماید،شامل آزورین(Azurin) و پلاستوسیانین(Plastocyanin) است.
میزان 30 گرم سولفات مس برای سلامتی انسان بالقوه کشنده است.میزان مجاز مس در آب نوشیدنی برای انسان با توجه به نوع منبع تامین آب متغیر است و از 1.5 تا 2 میلی گرم در هر لیتر تغییر می کند.از سوی دیگر،مقدار مس بالای آب برای جاندارن آبی نیز خطرناک است.اثرات مشاهده شده غلظت بالای مس در ماهی ها و سایر جانداران عبارت از آسیب دیدن سیست تنفسی،جگر،کلیه و سیستم عصبی می باشند.

مس با وزن اتمي 64 و نقطه ذوب 1083 C بشكل fcc متبلور مي شود. مس وآهن در حالت مذاب بهر نسبتي در هم حل مي شوند ولي در حالت جامدحلاليت آن تا 0.1 % نيز كاهش مي يابد.در سرد كردن آهسته ،مس بصورت فاز آهن-مس در مي آيد.ولي در سرد كردن سريع،مقدار مس بيشتري در محلول جامد باقي مي ماند.مس معمولا آستنتيت زاي ضعيف است.
تاريخچه مس در طول ادوار گذشته مراحل مختلفي را طي كرده است.قبل از 1900 بخاطر ترك ها و پارگي هاي سطحي در قطعات فورج و نورد به خاطر وجود مس ،يك عنصر مزاحم بشمار مي رفت.بهمين دليل تمام تلاش فولادسازان براين بود كه درصد مس را تا حد امكان كاهش دهند.ولي بدليل روش فولادسازي ، عملا درصد مس در فولادها تا 0.4 % نيز مي رسيد.
مكانيسم متالورژيكي تاثير مس بر عيوب كارگرم را مي توان به اكسيداسيون انتخابي آهن ربط داد.در اين حالت، مس در نزديكي سطح پوسته جمع مي شود. با بيشتر شدن دماي كار گرم از دماي ذوب مس ،مس مذاب در بين دانه هاي فولاد نفوذ كرده و كرنش پلاستيك مرزدانه ها را از هم مي گسلد. افزودن نيكل با توجه به ميزان مس،دماي محلول نيكل-مس را بالا برده و از ذوب مس جلوگيري مي كند. درصد نيكل افزوده شده در حدود نيم برابر مس باقيمانده است.
مس مقاومت خوردگي در محيط هاي اسيدي را افزايش مي دهد. از توانايي مس در سيستمهاي آلياژي رسوب سختي شونده بيشتر استفاده مي كنندبراي اين منظور حداقل مس 1.25 % مي باشد و درصد مشابهي از نيكل را نيز در بردارد.قابليت جوشكاري تحت تاثير مس نمي باشد.در فولادهاي پرآلياژي ضد اسيد، درصد مس بالاي 1 % باعث بهبودي مقاومت در برابراسيد كلريدريك و اسيد سولفريك مي شود.در جوشكاري فولادهاي كم آلياژي رسوب سختي شونده حاوي مس نيازي به پيش گرم نبوده و از دماهاي بين پاسي بالا بايد جلوگيري كرد.
مس در فولاد فقط در محلول جامد قرار می گیرد و تمایلی به تشکیل هیچگونه ترکیب بین فلزی با آهن ندارد.اکثر فولادهایی که بیشتر از 0.35 % مس دارند، قابلیت رسوب سختی دارند. از این ویژگی در فولادهای زنگ نزن با استحکام کششی بالا استفاده می شود.
افزودن 2 % مس به فولادهای کم کربن باعث افزایش استحکام تسلیم این فولادها بدون افت قابل ملاحظه در داکتیلیتی در حالت نرمال و رسوب سختی می شود.سرد کردن در هوا از دمای انحلال سبب باقی ماندن مس در محلول جامد شده وبا حرارت دادن دوباره در دمای 450 C ، رسوبات غنی از مس و بالا رفتن سختی تشکیل می شود.رسوب سختی فولادهای کم کربن با 1-1.5 % مس باعث افزایش استحکام کششی به اندازه 9 تن بر اینچ مربع و افزایش استحکام تسلیم به مقدار 11 تن بر اینچ مربع می شود. التبه این افزایش استحکام، کاهش داکتیلیتی را در پی دارد. در چنین فولادهایی که قابلیت رسوب سختی دارند ، با زیاد شدن درصد کربن ، این توانایی کاهش می یابد.
مس و سمنتیت با همدیگر آلیاژی تشکیل نمی دهند و مس موجود در آهن هیچگونه تاثیری بر روی نرخ انحلال کاربیدها در آستنیت در حین آستنیته کردن ندارد هرچند که تا حد کمی نرخ جوانه زنی و رشد پرلیت را می کاهد.
در فولادهایی که دارای درصد متوسطی از مس هستند، درصدهای مس اضافی که در محلول جامد قرار نمی گیرند، بصورت ذرات بسیار ریز غنی از مس در ساختار در می آیند. ولی اگر این درصد از 8 % فراتر رود ذرات درشت غنی از مس در مرزدانه ها تشکیل می شود.
خوردگی اتمسفری فولاد با افزودن مقادیر کمی از مس در حدود 0.15-0.25 % کاهش می یابد.مس مقاومت خوردگی فولاد در برابر اسید سولفریک را زیاد کرده وافزودن 0.75-3.0 % به فولاد زنگ نزن 18/8 نرخ خوردگی در محیط اسید سولفریک جوشان را شدیدا کاهش می دهد.بهبود مقاومت اکسیداسیون در دماهای بالا تنها با افزودن 0.25-0.5 % مس حاصل می شود.علت را می توان در تشکیل فیلم سطحی محکم بر روی فولاد جستجو کرد که در برابر اکسیداسیون مقاومت خوبی دارد.
مس در فولادهای ساختمانی کم آلیاژی با استحکام بالا که داکتیلیتی و شکل پذیری مشابهی داشته ولی از استحکام تسلیم بالاتری از فولادهای ساختمانی معمولی برخوردارند، استفاده می شود.مس موجود در این فولادها مقاومت خوردگی را افزایش داده و در موارد مشخصی تا 0.75 % به منظور افزایش استحکام تسلیم و استحکام کششی بدون تاثیر منفی بر قابلیت جوشکاری بکار می رود.
در چدنها،بمنظور پایدارسازی پرلیت در مقاطع نازک و ضخیم به ترکیب اضافه می شود و یکنواختی ساختار را ارتقاء می دهد.چنین اثری می تواند بر افزایش سختی تاثیر مثبتی داشته باشد.
اعتقاد بر این است که قابلیت انحلال مس در چدنها 3.5 % است. مس اضافی بصورت کره های ریز از محلول جدا میشود. البته درصد مس در چدنهای کروی بسیار پایین بوده و معمولا در این نوع چدنها یک عنصر نامطلوب محسوب می شود.
در چدن های Ni-Resist کروی ، با ترکیب استاندارد 14 % Ni,7 %Cu ، مس بجای نیکل می نشیند. هرچند که چنین درصدی بالایی از مس در این نوع چدنها وجود ندارد بلکه معمولا 21 % نیکل داشته و مس ندارند
کروم فلز سخت و درخشان با قابلیت پولیش بالا است و بی بو بدون مزه است.این فلز با ترکیب با اکسیژن و تشکیل فیلم اکسید بر روی سطح فولاد،از اکسیداسیون سطوح زیرین جلوگیری می کند.
در بیست وششم جولای 1761،یوهان گوتلب لمان(Johann Gottlob Lehmann) در کوهستان های اورال ماده معدنی نارنجی رنگی را پیدا کرد که وی آن را سرب قرمز سیبریه ای (Sibrain red lead) نام نهاد.با وجوداینکه این ماده با ترکیب سرب با سلنیم به اشتباه گرفته شد،ولی در واقع اینترکیب کرومات سرب با فرمول PbCrO4 بود که اکنون به نام کروکویت معدنی (Crocoite) شناخته می شود.
در سال 1770، پیتر سیمون پالاس(Peter Simon Pallas) در همان محلی که لمان به کاوش پرداخته بود،ماده معدنی سرب مانند به رنگ قرمز را یافت که خواص عالی در ساخت رنگدانه های رنگ از خود نشان میداد.استفاده از سرب قرمز سیبریان به عنوان رنگدانه گسترش فراوانی یافت.رنگ زردروشن که از کروکویت ساخته می شد،به صورت رنگ مدل نیز شناخته شد.
در سال 1797، لویس نیکلاس ون کولین(Louis Nicolas Vauquelin) نمونه های از سنگ معدنی کروکویت بدست آورد.وی توانست که از طریق مخلوط کردن کروکویت با اسید هیدروکلریک ،اکسید کروم با فرمول CrO3 را تولید کند.در سال 1798،ون کولین کشف کرد که با حرارت دادن این اکسید در کوره زغالی می توان کروم فلزی را تولید نمود.
در طی سال 1800، کروم یکی از عناصر اصلی رنگ ها را تشکیل می داد و در نمک های چرم سازی استفاده می شد ولی کاربرد اصلی آن در تولید آلیاژها بودکه 85 درصد کاربرد آن را به خود اختصاص می داد.
کروم سه ظرفیتی (Cr(III),Cr3+) به مقدار کم در متابولیسم شکر در انسان نیاز است و فقدان آن ممکن است سبب بیماری به نام فقدان کروم شود.برخلاف آن،کروم شش ظرفیتی بسیار سمی است.اخیرا دیده شده است که مکمل های غذایی پیکولینات کروم باعث آسیب های کروموزمی در انسان می شود که از اینرو در ایالات متحده ،رژیم غذایی روزانه برای تامین کروم از مقدار 200-50 میکروگرم برای بزرگسالان تا 35 میکروگرم(برای بزرگسالان مرد) و 25 میکروگرم (برای بزرگسالان زن) کاهش داده شده است.

كروم عنصر اصلي در فولادهاي زنگ نزن است.علل اصلي در افزودن كروم به تركيب فولاد را مي توان در عوامل زير دانست:
· افزايش سختي پذيري فولاد
· حفظ استحكام و سختي فولاد در دماهاي بالا و شرايط كاري
· افزايش مقاومت خوردگي در محيط هاي اكسيد كننده
وزن اتمي كروم 52 بوده و نقطه ذوب آن 1875 C است. و در هر دو حالت مايع و جامد بهر نسبتي در آهن حل مي شود.در بررسي رفتار كروم به عنوان عنصر آلياژي سه عامل زير را بايد در نظر گرفت:
· كروم تمايل زيادي به تركيب با كربن دارد و لذا ذرات كاربيدي همان كاربيدهاي كمپلكس آهن-كروم هستد.
· كروم با اكسیژن تركيب شده و تركيب ديرگداز غيرفلزي اكسيد كروم تشكيل مي دهد كه نقش فيلم سطحي محافظ در سطح فولاد را بازي مي كند.
· كروم فريت زاي بسيار قوي است.
در حدود 13% كروم در تركيب فولاد باعث محدود شدن فاز آستنيت در ريزساختار مي شود. با افزايش درصد كروم، مقاومت خوردگي فولاد زياد مي شود. وهم چنين در دماهاي بالا مقاومت به اكسيداسيون آنها زياد خواهد شد.
حضور كروم باعث مي شود دماغه هاي نمودار TTT به سمت راست تغيير مكان دهند و سختي پذيري افزايش يابد. با اين وجود با افزايش درصد كروم جوشكاري آنها مشكل خواهد شد.به ازاي افزايش يك درصدي كروم در تركيب فولاد استحكام كششي فولاد از 80 تا 100Mpa افزايش مي يابد.
کروم مقاومت خوردگی و استحکام فریت را شدیدا افزوده ولی تاثیر متوسطی بر سخت گردانی فاز آستنیت دارد.در فولادهای پرکربن ، مقاومت به سایش را افزایش میدهد.
افزودن کروم به آهن خالص گستره پایداری فاز گاما را محدود کرده و در درصدهای 13 % پایداری فاز فریت دلتا را تا دمای اتاق افزایش می دهد.افزودن بیش از 30 % کروم به ترکیب، فاز بین فلزی سیگما FeCr را تشکیل می دهد.لازم است یادآوری شود که حضور عناصر دیگر بر تشکیل فاز سیگما تاثیر دارند بطوریکه با توجه به ترکیب شیمیایی فولاد می تواند در درصد های پایین کروم نیز تشکیل شود.به عنوان مثال ، فولاد زنگ نزن 18/8 که عناصر کاربید زایی مثل 3 % مولیبدن و 1 % تیتانیوم دارد، با عملیات حرارتی در دمای 850 C فاز سیگما در ساختار ظاهر می شود.علاوه بر آن، در درصدهای کروم کمتر از 20 % و در حضور عنصر کبالت در مقادیر 7-10 % چنین تردی ناشی از حضور فاز سیگما مشهود است.
وجود کروم در ترکیب آلیاژهای آهن – کربن بالاخص در درصدهای کربن زیاد تشکیل کاربیدها را می افزاید.در سیستم آلیاژی آهن-کربن-کروم چهار نوع کاربید کمپلکس اصلی وجود دارند: سمنتیت رومبیک (FeCr)3C در درصدهای کروم تا 15 % ،کاربید کروم تریگونال (CrFe)7C3 در درصدهای آهن 55 % ،کاربید کروم کوبیک(CrFe)4C که در آن کروم تا 24 % جایگزین آهن می شود و کاربید کروم اورتورومبیک (CrFe)2C3 که درصد کمی از آهن را داراست ولی فقط در فولادهایی یافت می شود که تقریبا 9 % کربن داشته باشند.کروم اضافی از مقدار لازم برای تشکیل کاربید وارد محلول جامد می شود.
برخلاف کبالت، درصدی از کروم که در محلول جامد وجود دارد، تاثیر کمی بر قابلیت سخت گردانی در مقایسه با سایر عناصر آلیاژی دارد.کرومی که در محلول جامد است ، زمان استحاله ایزوترمال آستنیت در فولاد های با 0.3 % کربن و بیشتر از 2 % کروم را زیادتر می کند.و در سرعتهای سردکردن عادی پرلیتی در ساختار تشکیل نمی شود.ولی اگربتوان شرایط را طوری فراهم آورد که با نرخ سرد کردن عادی از استحاله مارتنزیتی جلوگیری شود ، در ریزساختار بینیت ریز تشکیل خواهد شد.
افزودن کروم به فولاد درصد کربن پرلیت یوتکتوئید را کاسته و دمای استحاله آستنیت را می افزاید. در فولاد 12 % کروم و0.35 % کربن، استحاله یوتکتوئید در 0.35 % کربن و دمای یوتکتوئید 800 C رخ می دهد.
فولادی با 0.25 تا 0.45 درصد کربن و1.5 درصد کروم استحکام کششی و داکتیلیتی خوبی داشته ولی باید در برابر رشد دانه و تردی احتیاط های لازم را بعمل آورد.بعد از کوئنچ، این فولاد در برابر برگشت مقاومت خوبی از خود نشان می دهد فولاد با 1 درصد کروم مقاومت خوبی در برابر خوردگی اتمسفری عادی از خود نشان می دهد. وجود 0.5 درصد مولیبدن استحکامهای کششی را تضمین می کند.
قطعات فورج تحت کشش بالا و بزرگ از فولادهای کروم دار 3 تا 3.5 درصد کروم همراه با 0.5 درصد مولیبدن تولید می شوند که استحکام بالای آنها ناشی از ریزساختار بینیتی است که در حین سرد کردن آرام تشکیل شده است.
افزایش درصد کروم تا 5-6 % همراه با درصد کمی از مولیبدن یا نیوبیوم مقاومت خوردگی نسبتا خوب همراه با مقاومت خوب به خزش در دماهای نسبتا بالا را در پی دارد. این چنین فولادهایی در صنایع پالایش نفت کاربرد پیدا کردند. سایر فولاد های کم کربن که در این حوزه کاری استفاده می شوند دارای درصد کم کروم0.5-2.5 % همراه با درصد کمی از مولیبدن هستند.البته مقاومت خوبی در برابر خزش در دماهای متوسط دارند و درصورتیکه درصد کربنشان از 0.3 فراتر نرود، قابلیت جوشکاری خوبی نیز خواهند داشت.
عنصر اصلی در فولادهای آلیاژی کم کروم نیکل است. این نوع فولادها دارای 1% کروم و 1.5-4.5 % نیکل هستند.فولادهای با نیکل پایین و کربن 0.3 % در روغن سرد می شوند ولی کوئتچ فولادهای با 1.2 % Cr و 4 % Ni در هوا حتی در مقاطع بزرگ سختی بالایی را در پی دارد.در شرایط کوئنچ و تمپر،فولادهای نیکل-کروم استحکام خوبی داشته وبرای تولید مقاطع بزرگ مناسب هستند.برای کاهش حساسیت به تردی تمپر به ترکیب این فولادها مولیبدن اضافه می شود.
فولادهای نیکل – کروم و نیکل – کروم-مولیبدن برای کاربردهایی استفاده می شوند که نیاز به سختی سطحی باشد.بخاطر تمایل زیاد کروم با تشکیل کاربید ،سختی لایه سطحی را افزایش می دهد.فولادهای کربنی ساده برای کاربردهای سختی سطحی شونده Case Hardening مناسب نیستند چرا که با وجود سخت بودن سطح،ترد بوده و تمایل به جدا شدن Spall دارد.
بیشترین سختی در سطح را می توان در فولادهای نیتریده شونده حاوی کروم بدست آورد.کروم تمایل قوی به ترکیب با نیتروژن دارد.ازمشهورترین فولادهای این نوع،می توان به فولادهای نیتروآلوی با 1.5 % Cr و 1% Al اشاره کرد.فولاد با کاربرد زیاد در این سری ،فولاد حاوی 3% Cr و 0.5 % Mo می باشد.
کروم مقاومت به سایش فولادهای کربنی ساده را افزایش می دهد. موادی که دارای کروم هستند در صورتیکه صحیح آبکاری شوند(1%C,1.5 % Cr)دارای سختی سطحی بالا، اندازه دانه ریز و مقاومت سایشی بالایی خواهند داشت. این مواد را می توان قبل از آبکاری برای سهولت در ماشینکاری نرم کرد.فولادهای مشابه که در آب کوئنج می شوند، دارای سختی سطحی بسیار بالا و مرکز نرم خواهند بود.
مقادیر مشخصی از کروم در فولادهای قالب گرم موجود است و در فولادهای خاصی که برای این منظور استفــاده می شود، دارای 2 % C و 12 % Cr هستند. در این فولادها، کاربیدهای آزاد دیده می شوند که مقاومت سایشی را بالا می برند.این فولادها در حین حرارت دهی در محدوده 500-600 C سختی ثانویه از خود نشان می دهند.کیفیت بالای این نوع فولاد مربوط به حفظ شکل و پروفیل قالب است که مربوط به مقاومت عالی کاربید های کروم در برابر دکربوریزاسیون می شود.
فولاد های تندبر که حاوی تنگستن و مولیبدن با 1% V یا انواع پرکربن و پروانادیم هســـتند دارای درصـــــــــــدی از کروم (3.5-5.5 %)بوده تا کاربیدها در ریزساختار پایدار باشند.
کروم عنصری است که مصرف بیشتری در تولید فولادهای زنگ نزن دارد.در کل فولادهای زنگ نزن به سه دسته مارتنزیتی،آستنیتی و فریتی گروه بندی می شوند.اولین گروهیکه از این فولادها تولید شده ند ، فولادهای مارتنزیتی با 13 % کروم و 0.3 % کربن بودند.کروم عامل اصلی در افزایش مقاومت خوردگی این فولادها بوده و کربن یوتکتوئید را می کاهد. در شرایط آبکاری و برگشت،فولادهای با 13 % Cr دارای سختی 530 HB خواهند بود.جوشکاری این فولادها باعث تردی آنها شده و نیاز به عملیات حرارتی بعدی خواهند داشت.قابلیت فورج پذیری در محدوده دمایی 1100-900 C خوب بوده بعد از آنیل در دمـای 750 C قابلیت ماشینکاری خواهد داشت.هرچند که خواص پرسکاری سرد آنها ضعیف است.
در فولاد مشابه با 13 % Cr و تنها با کربن 0.1 % ،سختی پذیری کمتر بوده و در شرایط آبکاری در روغن و بعد از تمپر کامل، سختی 150 HB خواهد داشت.این نوع فولادهای زنگ نزن در تیغه های توربین استفاده می شوند.با عملیات حرارتی این نوع فولادها برای جلوگیری از تردی ، می توان جوشکاری را انجام داد.فورج پذیری آنها بصورت گرم بوده ولی خواص پرسکاری سردآنها کم است.
با افزایش درصد کروم ،مقاومت خوردگی فولادهای مارتنزیتی بیشتر می شود اما در درصدهای 17 % Cr و کربن 0.07 درصد ،بدلیل اینکه کروم فریت زاست، سختی پذیری کمتری خواهند داشت.این نوع فولادها در گروه فولادهای فریتی قرار می گیرند.علیرغم اینکه جوشکاری وخواص پرسکاری سرد آنها خوب است، اما جوشکاری آنها را ترد می کند.افزودن 2.5 درصد نیکل بهمراه افزایش درصد کربن تا 0.15 درصد ، باعث افزایش سختی پذیری فولاد بدلیل پایداری بیشتر آستنیت می شود. این نوع فولادها کاربرد وسیعی بعنوان شیر در صنایع شیمیایی دارند.
فولاد با درصد کربن 0.1 % ویا کمتر و کروم بالای 20 % فریتی بوده ولذا قابلیت سختی پذیری ندارند.درصد کروم بالا باعث مقاوم شدن فولاد در برابر اسیدهای اکسید کننده و اسید نیتریک می شود وخاصیت مهم دیگر که در حضور کروم بالا می توان بدان دست یافت ، مقاومت خوب در برابر اکسیداسیون و کنده شدن سطحی در دماهای بالا می باشد.
برای کار در دماهای بالا، فولادهای با 20-27% کروم مناسب هستند. فولاد با 27 % Cr را می توان در 1000 C نیز استفاده کرد. اگر چه در این دما خواص مکانیکی این فولادها پایین است. این نوع فولاد در اتمسفرهای گوگرد دار نیز قابل استفاده هستند.
افزودن نیکل به ترکیب فولادهای کروم بالا باعث افزایش مقاومت خوردگی ، مقاومت اکسیداسیون وپوسته برداری در دماهای بالا می شود.فولاد کم کربن با 18% Cr-8% Ni در حین سرد کردن تا دمای زیر دمای اتاق کاملا آستنیتی بوده و لذا با کوئنچ نمی توان سخت کاری روی آنها انجام داد. تنها راه افزایش استحکام این نوع فولادها انجام کار سرد است.نرمترین حالت این فولادها وقتی است که در دمای 1050-1100 C عملیات حرارتی شوند.مقاومت خوردگی در اسیدهای غیراکسیدی مثل اسید سولفریک ،اسید هیدروکلریک زیاد بوده و با افزودن 3% Mo بالاخص همراه درصدی از مس مشابه ، مقاومت خوردگی را نیز افزایش می دهد.
اعتقاد بر اینست که علت اصلی محافظ بودن فولادهای زنگ نزن، وجود فیلم اکسیدی بسیار نازک در سطح فولاد است که این فیلم در اولین تماس فولاد با محیط تشکیل می شود.این فیلم بقدری نازک است که اصلا دیده نمی شود.و در آب و بسیاری از محیط ها قابل حل نمی باشد.
با حرارت دادن فولاد 18/8 در محدوده دمایی 650-850 C مقاومت به شیمیایی در مرز دانه شدیدا کاهش می یابد.این چنین حالتی در مناطق HAZ بسیار خطرناک است و ناشی از خالی شدن مناطق مجاور مرزدانه از کروم است.که در این دما کاربید کروم رسوب می کند.وقتی کربن 0.04-0.05 % باشد این افت مقاومت خوردگی زیاد خواهد بود.برای حذف و یا کمتر کردن این حالت ، بهتر است درصد کربن حداکثر 0.03 % باشد بطوریکه کاربید کمتری تشکیل شود یا عنصری اضافه کنیم که تمایل به ترکیب آن با کربن نسبت به کروم بسیار بیشتر باشد تا کاربید کروم تشکیل نشود و کروم در محلول جامد باقی بماند.
فولاد آستنیتی کروم-نیکل در دماهای بالا استحکام خوبی داردولی با این وجود برای بهتر کردن کارآیی آن عناصر دیگر اضافه شود.به عنوان مثال ،فولاد 18 % Cr و 12 % Ni همراه با نیوبیوم دردماهای بین 600-650 C مقاومت خزشی خوبی دارد.برای کاربردهای کمی بالاتر از این دما ، افزودن عناصری چون کبالت، تنگستن و مولیبدن لازم است. ولی اگر محـــــــــدوده دمایی 750-800 C باشد،مواد پایه کبالتی و یا نیکلی گزینه بهتری خواهند بود.
درصدهای بالای کروم و نیکل باعث افزایش مقاومت اکسیداسیون در دماهای بالا می شود.در برخی کاربردها که نیاز به این است که مقاومت پوسته برداری خوبی نیز داشته باشیم،درصد سیلیس بالا بهمراه مولیبدن انتخاب می شود.یک ترکیب نمونه از این نوع فولاد 19% Cr,8% Ni, 3% W, 2 % Si می باشد.اگر هدف این باشد که مقاومت حرارتی استثنایی داشته باشیم، آلیاژهای پایه نیکلی مثل Nichrome با ترکیب 65 % Ni,15 % Cr ,20 % Fe و یا آلیاژ نیکل – کروم 80/20 استفاده می شود.
در سالهای اخیر نوعی از فولادها آستنیتی معرفی شده اند که توسط فرآیند رسوب سختی کنترل می شوند.این فولادها هنگام سرد کردن از دمای بالای آستنیتی بوده و با عملیات در دمای زیر صفر و یا تمپر در دمای 750 C آستنیت به مارتنزیت دگرگون می یابد.پیرسازی بعدی در دمای 450-600 C افزایش زیاد در خواص مکانیکی همراه با مقاومت خوردگی خوب در پی دارد.مثالی از این نوع فولادها 16 % Cr, 5% Ni , 2% Cu, 2 % Mo می باشد. مس و مولیبدن در بهبود مقاومت خوردگی سهیم هستند . مس مکانسیم رسوب سختی را بهبود می بخشد.
کروم کاربید ساز قوی بوده و در ترکیب چدنها تشکیل کاربیدهایی می دهد که خیلی پایدارتر از کاربید آهن هستند. اگر درصد کمی از کروم در فولاد باشد، تشکیل سمنتیت پرویوتکتوئید و پرلیت در هنگام سرد کردن آرام و عملیات حرارتی کند می شود.حداکثر کروم در چدنهای چکش خوار 0.03 % می باشد.
در هر دو نوع چدنهای معمولی و آلیاژی ، درصدهای 0.5-1.0 % کروم برای بهبود خواص مکانیکی بکار می رود.این درصد کروم با حذف فریت آزاد در ریزساختار باعث پایداری پرلیت می شود. در نتیجه استحکام و سختی افزایش می یابد.چدنهای با کروم بالا پایداری عالی دردماهای بالا دارند و برای کاربردهای دمای بالا معمولا دو گروه از چدنــــها بیشتر استفاده می شوند: چدنهای 17 % Cr و چدنهای 30 % Cr و بالاتر. هر دونوع از چدنها مقاومت حرارتی خوبی دارند اما دومی دارای مقاومت خوردگی بالاتری است.
کروم در بسیاری از چدنهای آلیاژی وجود دارد.وجود کروم در چدن نایهارد باعث تبدیل این چدن به چدن سفید می شود.در چدنهای Niresist و Nicrosil تقریبا 1.5 درصد کروم می باشند تا خاصیت مقاومت خوردگی و پوسته برداری ارتقاء یابد و زمینه آستنیتی تشکیل شود. با این وجود بدلیل اینکه وجود مقادیر زیاد کاربید چندان مطلوب نمی باشد، مقدار کروم در این چدنها محدود می شود.
نیکل فلز سفید نقره ای رنگی است که پرداخت بالایی دارد.این عنصر در طبیعت با گوگرد،آرسنیک ترکیب می شود.در تولید سکه نیز از آن استفاده می شود.
کاربرد نیکل به دوران باستان و در حدود 3500 م ق بر میگردد.برنزهایی که در سوریه امروزی کشف شده اند،در حدود 2 درصد نیکل دارند.علاوه برآن،دست نوشته های چینی هستند که در آنها به استفاده از مس سفید برای جهت یابی در 1400 و 1700 م ق اشاره شده است.با این وجودبا توجه به اینکه سنگ معدن نیکل معمولا با نقره به اشتباه گرفته می شد،از اینرو تاریخ دقیق و قابل اعتمادی از کاربرد آن وجود ندارد.
اهمیت سنگ معدن های حاوی نیکل (به عنوان مثال کوپرونیکل kupfernickel ) در سبز کردن شیشه ها خلاصه می شد.در سال 1751،بارون اکسل فدریک کرونشتات (Baron Axe Fredrik Cronstedt) تلاش کرد که مس را ازکوپرونیکل (که امروزه نیکولیت نامیده می شود) استخراج نماید،اما در نهایت فلز سفید رنگی بنام نیکل را از آن استخراج کرد.سکه های نیکلی ،نخست، در سال 1881 در کشور سوییس استفاده شد.
نیکل در بیولوژی چندین نقش را ایفا می نماید.در واقع،اولین پروتئینی که متبلور می شود،اوریز(آنزیمی که اوره را به کربنات آمونیم تبدیل میکند)(Urease) است که دارای عنصر نیکل است و به هیدرولیز اوره کمک می کند.هیدروژناسهای NiFe علاوه بر کلاسترهای آهن-گوگرد،دارای نیکل نیز می باشند.
نيكل به عنوان عنصر آلياژي در فولاد بهمراه كروم استفاده مي شود. وزن اتمي آن 59 بوده و در 1435 C ذوب مي شود.در حالت مذاب و جامد بهر نسبتي در آهن حل مي شود.نيكل عنصر آستنيت زا است و هيچگونه تاثيري در تشكيل كاربيد و اكسيد ندارد. به علت اينكه تمايل به تركيب آن با كربن و اكسيژن كمتر از آهن است.
نيكل سختي پذيري فولاد را افزايش مي دهد و در حدود 0.25 تا 5 درصد در تركيب فولاد وجود دارد. نيكل چقرمگي شكست فولاد بهمراه استحكام و سختي آن را افزايش مي دهد. فلذا،در مواقعي كه در دماهاي پايين به چقرمگي شكست بالاي نياز باشد درصد آن تا 9 نيز مي توان باشد.در فولادهاي زنگ نزن آستنيتي7 تا 35 درصد نيكل وجود دارد.در اين فولادها براي خنثي كردن اثر فريت زايي كروم از نيكل بهره مي گيرند.فولادهاي با 30 – 40 % نيكل ،آلياژ Invar ناميده مي شوند كه انقباض و انبساط بسيار كمتري دارند.
نيكل خودبخود باعث افزايش مقاومت خوردگي مي شود. در درصدهاي بالاتر از 7% باعث آستنيتي شدن فولادهاي مقاوم در برابر مواد شيمیايي تا دماهاي خيلي زياد مي شود . در دماهاي بالاي 600 C استحكام فولادهاي آستنيتي بيشتر مي شود.
نیکل بهر نسبتی در آهن گاما حل می شود وفقط 10 درصد در آهن آلفا قابل حل است.با تشکیل محلول جامد هنگام افزودن نیکل ، فریت را چقرمه کرده و استحکام می بخشد و تا حدی سختی پذیری آستنیت را زیاد می کند.در مقادیر کربن زیاد، نیکل سعی می کند که در آستنیت باقی بماند.
از آنجاییکه نیکل در کاهش دمای تبدیل گاما به آلفا بسیار موثر است، این محلول جامد تا دمای اتاق آستنیتی باقی مانده و بالاخص اگر درصد نیکل بیشتر از 30% باشد دیگر نرخ سرد کردن تاثیر چندانی نخواهد داشت.
نیکل کاربید ساز نیست و در فولاد بصورت فاز محلول جامد می باشد.نرخ دیفوزیون کربن در محلول جامد در حضور نیکل چندان تحت تاثیر درصد نیکل نیست ولی در صورت وجود کربن در محلول جامد، نرخ دیفوزیون نیکل در آن بسیار کند خواهد بود.تاثیر نیکل بر استحاله آستنیتی در محدوده دمای بینیت موثر تر از دمای تشکیل پرلیت است.از اینرو، تاثیر نیکل بر اساس اثر آن بر فریت و نحوه تشکیل و توزیع فاز کاربیدی سنجیده می شود.
برای افزایش استحکام و سختی بدون کاهش قابل ملاحظه داکتیلیتی فولادهای کم کربن معینی، تا 5 درصد نیکل اضافه می شود.ساختار پرلیت کم کربن ریز بوده چون نیکل کربن یوتکتوئید را می کاهد و در مقادیر 3-5 % Ni با آرام سرد کردن از دمای آستنیته، فریت نیکل دار تشکیل می شود.در فولادهای با نیکل بالاتر از 5 % بدلیل حضور مارتنزیت ، امکان تردی فولادهای آرام سرد شده نیز وجود دارد.فولادهای با 15-20 % Ni کاملا مارتنزتی بوده که در سیستم های آهن – نیکل ، بیشترین سختی 300 HB را دارد.با افزایش نیکل از این مقدار، آستنیت ظاهر شده و سختی کاهش می یابد.
فولادهای نیکل دار همانند سایر فولادهای آلیاژی بعد از آبکاری و برگشت به خواص مطلوبی می رسند.فولادهای 3-5 %Ni در دماهای پایین تر از فولادهای با کربن مشابه بخوبی آبکاری می شوند چراکه نیکل دمای استحاله یوتکتوئید را می کاهد.علاوه بر آن کاربیدهای کمپلکسی در این فولادها تشکیل نمی شود فلذا زمان همدمایی کوتاهتر خواهد شد.بدلیل کاهش احتمال دکربوریزاسیون و اعوجاج می توان از دمای بالا و قابل قبول استفاده کرد تا ترکیب عالی از مقاومت ضربه خوب و داکتیلیتی و ازدیاد استحکام بدست آید.
فولادهای سختی سطحی شونده کم کربن اغلب دارای تا 3% نیکل هستند.در چنین فولادی ، سطح چقرمه ولی محکم همراه با خواص قابل قبول در مرکز بوجود می آید.نیکل با کاهش دمای استحاله،و یکسان کردن دمای سطح و مرکز، اعوجاج را می کاهد.نیکل نرخ دیفوزیون کربن را می کاهد.بنابر این در فرآیند کربوریزاسیون،به زمان زیادی نیاز است.افزودن 1 درصد کروم به ترکیب فولاد،از دیفوزیون آرام کربن جلوگیری می کند . ولی باید دقت کرد که کروم زیاد تردی سطح را زیاد می کندو در نتیجه امکان کنده شدن پوست Scaling بیشتر می شود.
افزودن نیکل به فولادهای کم کربن سبب افزایش مقاومت ضربه در دماهای کـــم می شود.فولاد نرمــــــــال شده با ترکـــیب 0.1 % C,3 % Ni انرژی ضربه 40-50 ft.Ib در دمای -75 C دارد در حالیکه انرژی ضربه همان فولاد بدون نیکل با همان درصد کربن 10 ft.ib است.چنین فولادهای نیکل داری از قابلیت بالای جوشکاری برخوردار هستند.فولاد کم کربن با 9 درصد نیکل برای فلز جوش استفاده می شود که نیاز به انرژی ضربه خوب در دماهای پایین است.نیکل مقاومت خوردگی اتمسفری این فولادها را افزایش می دهد.
اگر چه فولادهای نیکلی استفاه وسیعی دارند، معهذا برای بهبود و حصول به خواص فیزیکی و مکانیکی مورد نظر درصدی از کروم یا مولیبدن نیز به ترکیب اضافه می شود.این درصد ناچیز از عناصر فوق سختی پذیری فولاد را افزایش می دهد و به تبع آن استحکام بالا و مقاومت سایشی زیاد همراه با همان چقرمگی بدست می آید.فولادی از این نوع را می توان 1-4 % Ni, up to 1.5 % Cr و اغلب تا 0.5 % Mo برای کاهش حساسیت تردی آبی مثال زد.
در فولادهای نیتریدی استاندارد کروم- مولیبدن- آلومینیوم مقدارن نیکل تا 3.5 درصد است و دراین فرآیند نیتریداسیون، ترکیب های بین فلزی نیکل- کروم تشکیل می شود. سطح بسیار سخت شده ولی رسوب سختی مرکز استحــــــکام تسلیـــــم را به اندازه 20 ton/ in2 افزایش می دهد.
آلیاژهای مغناطیس دایم از نوع Alnico دارای نیکل از 11 تا 32 درصد هستند.در توربینهای گازی و در مصارفی که نیاز به استحکام بالا در دماهای بالا می باشند، آلیاژهای نیکل- آهن ، سری Inconel, Nimanic, بکار می روند.آلیاژهای نیکل - آهن 35-95 درصد نیکل داشته و از نفوذ خواص مغناطیسی بسیار بالایی برخورداند و در مصارف الکتریکی استفاده میشوند.سایر آلیاژهای آستنیتی نیکل - آهن در موارد معینی بکار می روند. به عنوان مثال، Invar که تقریبا 36 % Ni دارد، انبساط ناچیزی در محدوده وسیعی از درجه حرارت دارد فلذا در فنر ها کاربرد زیادی خواهند داشت.علیرغم ساختار آستنیتی پایدارآلیاژ 30 درصد نیکل-کروم، تغییرات نفوذ مغناطیس در نزدیکی دمای اتاق امکان دستیابی به نفوذ مغناطیس متغیر با تغییر دما را فراهم می آورد.مقاومت های تشعشعی الکتریکی از آلیاژهای نیکل- کروم یا نیکل – آهن می باشند که مقاومت اکسیداسیون عالی در دماهای بالا دارند.
نیکل با چدن در هر نسبتی آلیاژ تشکیل می دهد.در چدنها، نیکل گرافیت زای متوسطی بوده و درصد پرلیت را زیاد می کند و مقدار فریت آزاد را می کاهد.فلذا یکنواختی ساختار و خواص را بیشتر می کند.از اینرو چدنهای آلیاژی با نیکل ، خواص و ساختار یکنواخت تری در مقاطع نازک و ضخیم از خود نشان می دهد.
افزودن مقادیر کمی از نیکل 0.1- 1 % پرلیت را اصلاح می کندو اگر مقدار زیادی اضافه شود، ساختار مارتنزیت و آستنیت در ریزساختار ظاهر می شود.از طرفی اصلاح و پایدارسازی پرلیت قابلیت ماشینکاری چدنها را افزوده و سختی پذیری آنها را زیاد می کند.بهمین دلیل است که چدنهای آلیاژی نیکل دار بیشتر در ریختگی های موتور ماشین کاربرد دارد.
افزودن مقدار کمی از نیکل اثری حدود یک سوم اثر سیلیس بر گرافیت زایی داردو بنابراین، اگر در چدنهای آلیاژی نیکل دار بخواهیم پدیده گرافیت زایی را محدود کنیم باید درصد سیلیس را کمتر کنیم که عملا چنین کاری در اکثر موارد عملی نیست. برای این منظور، کروم به ترکیب اضافه می شود.
Ni Resist چدن پرنیکلی است که نیکل و مس به حد کافی در آن است تا که ساختار آستنیتی پایدار باشد و بتوان به خواص فیزیکی و مکانیکی مورد نظر دست یافت.این چدن بالاخص در محلولهای متوسط مقاومت خوردگی خوب داشته و مقاومت حرارتی در دماهای پایین بهتر شده ای داردوNicrosilal چدن آستنیتی نیکل داری است که مقاومت حرارتی زیادی در دماهای بالا دارد.
Ni Hard چدن سفید مقاوم به سایشی است که نیکل کافی داشته تا ساختار مارتنزیتی را در شرایط بعد از ریختگی ارتقاء دهد. اگر درصد نیکل زیاد شود، احتمال وجود آستنیت باقی مانده نیز زیاد خواهد شد.
مولیبدن خالص به رنگ سفید نقره ای بوده و نسبتا نرم بوده و جزو فلرات با بالاترین نقطه ذوب است.بیش از دو سوم مولیبدن در تولید آلیاژها استفاده می شوند.
مولیبدن از واژه یونانی Molybdos به معنای شبیه سرب گرفته شده است و در طبیعت به شکل آزاد پیدا نمی شود.ترکیبات این عنصر که در طبیعت دیده می شدند،با عناصر دیگر مثل کربن و یا سرب به اشتباه گرفته می شد.در سال 1778،کارل ویلهلم شیل (Carl Wilhelm Scheele) توانست روشی برای جداسازی مولیبدن از گرافیت و سرب و جدا کردن آن از اکسید فلز از مولیبدنیت را تعیین نماید.در سال 1782،هلم(Hjelm) با احیا توسط کربن توانست که ناخالصی ها را از سنگ معدن جدا سازد.
مولیبدن در حیات تمام انواع ارگان ها نقش دارد.این فلز در دو گروه آنزیمی به نامهای نیتروژنازها(nitrogenases) و مولیبدوپترین ها(Molybdopterins) دیده می شده اند.
نیتروژنازها در باکتریها وجود دارند و در مسیر های تثبیت نیتروژن باید حضور داشته باشند.باکتریها در داخل گیاه نیز می تواند دیده شوند.اتم مولیبدن در یک کلاستر هست که شامل اتم های آهن و گوگرد است.واژه مولیبدوپترین با گروهی از آنزیم ها که شامل آنزیمهای حاوی تنگستن هستند،به اشتباه گرفته می شوند و عبارت مولیبدوپترین در واقع به اتم فلز برنمی گردد.گروهی را که به عنوان آنزیمهای تک اتمی مولیبدن به عنوان اتم فلز شناخته می شوند،در یک کلاستر دیده نمی شوند.
موليبدن وزن اتمي 96 و نقطه ذوب 2610 C دارد.ساختار كريستالي آن bcc بوده و در فولاد فريت زا و كاربيد زاست.حداقل 3 % موليبدن باعث مي شود كه فريت در تمام دماهاپايدار باشد.سختي پذيري را افزايش مي دهد.در حدود 0.5-1.5 % موليبدن به فولادهاي آلياژي اضافه مي شودتا استحكام و مقاومت به خزشي آنها در دماهاي بالا حفظ شود.فولادهاي زنگ نزن از 0.5 تا 4.0 % موليبدن دارند. فولادهاي زنگ نزن آستنيتي براي مقاومت خوردگي بيشتر در محيط هاي خورنده حاوي موليبدن مناسب هستند. هم چنين ، مقاومت در برابر پوسته شدن را مي كاهد.
در عمليات حرارتي فولادها ،Mo تردي تمپر را مي كاهد و تشكيل دانه هاي ريز را تسريع كرده و بر قابليت جوشكاري تاثير مطلوبي دارد. افزايش استحكام را در پي داشته و بنا بر اين قابليت چكش كاري كم مي شود.
موليبدن مقاومت در برابر خوردگي موضعي و حفره دار شدن را بيشتر كرده و با تشكيل فازهاي ثانويه در فولادهاي فريتي،فريتي-آستنيتي و آستنيتي،استحكام آنها را افزايش مي دهد. هم چنين در فولادهاي زنگ نزن مارتنزيتي، به علت اثر آن بر رسوب كاربيد ها ،سختي فولاد دردماهاي برگشت بالا را افزايش مي دهد.
موليبدن به عنوان عنصر آلياژي در فولادهاي ميكروآلياژي كربني، كم كربن با استحكام بالا در محدوده 0.05-0.25 بكار رفته و چقرمگي و استحكام را بالا مي برد.معمولا همراه با افزودن موليبدن از منگنز بالا وكمي نيكل نيز استفاده مي كنند.هدف از ميكروآلياژي كردن فولاد ، جلوگيري از تشكيل پرليت در ريزساختار ، كاهش اندازه نواحي پرليت و تشكيل كاربيد هاي لايه اي ريز مي باشد.اگر درصد موليبدن و يا ساير عناصر آلياژي بالا باشد، فريت خاصي بنام فريت سوزني Acicular ferrite تشكيل خواهد شد.
عنصر مولیبدن باعث بهبود چقرمگی در فولادهای کربنی ساده با استحکام بالا می شود و بنابراین در محدوده دمایی قابل استفاده ،استحکام و سختی را افزایش می دهد. در مقایسه با فولادهای کربنی ساده ،فولادهای مولیبدن دار خواس الاستیک و استحکام ضربه ای بهتری دارند.
استحاله در فولادهای مولیبدن دار در سرد کردن های آرام رخ می دهد و در نتیجه باعث می شود عمق سخت گردانی افزایش یابد. این افزایش در عمق سخت گردانی سبب فایق آمدن بر مشکلات مربوط به اثر جرم بر سخت گردانی در مقاطع ضخیم شود.برای یکنواختی توزیع سختی در مقاطع ضخیم مقدار کمی مولیبدن اضافه می شود.0.15 % مولیبدن اثر مشابه با 0.20 % کروم و یا 1.25 % نیکل دارد.
بعضی از فولادها بعد از سرد کردن آرام از دمای برگشت 625 C انرژی ضربه کمتری در مقایسه با فولادهایی دارند که بعد از برگشت با سرعت سرد شده اند.این پدیده به تردی تمپر معروف است.فولادهای منگنز، کروم و کروم – نیکل با کروم بیش از 0.75 % کروم به این نوع تردی حساس هستند.برای کاهش حساسیت به این نوع تردی به ترکیب این فولادها ، مولیبدن اضافه می شود. چنین فولادهایی در محورها، میل لنگ ها و چرخدنده ها کاربرد دارند.
نرم شدن مارتنزیت در دماهای برگشت بالای 260 C بوسیله مولیبدن به تاخیر می افتد و در 0.25 % Mo سختی فولادهای مارتنزیتی پرکربن و کربن متوسط در هنگام برگشت در دمای 400-630 C را افزایش میدهد.
در دماهای برگشت بالا ، مولیبدن وارد فاز کاربید می شود.با بالا بردن دمای برگشت دردمای 700 C غلظت بالایی از مولیبدن در سمنتیت اورتورومبیک وارد می شود و در درصدهای بالاتر از 0.5% Mo ، کاربید fcc ((Fe,Mo)23C6) تشکیل خواهد شد.
مولیبدنی که به فولادهای کم آلیاژی و پرآلیاژی اضافه می شود، مقاومت خزشی و استحکام دردماهای بالا را افزایش میدهد.دو علت اصلی را می توان در این نوع رفتار فولادهای مولیبدن دار دخیل دانست: افزایش استحکام خزشی فریت و دیگری بالا بردن دمای تبلور مجدد بعد از سخت گردانی. عامل دیگری نیز می توان بدان مربوط دانست و آن اینست که ساختار میانی بین پرلیت و مارتنزیت تمپر شده تشکیل می شود که استحکام خزشی بهتری دارد.
با اینکه مولیبدن بخودی خود استحکام خزشی فولاد را می افزاید، ولی فولادهایی که دردماهای بالا کاربرد زیادی دارند، در ترکیبشان علاوه بر مولیبدن ، وانادیم و یا کروم نیز دیده می شوند.فولادهای از این سری دارای 1% Cr,0.5 % Mo و یا 0.5% Mo,0.2% Cr می باشند.این فولادها در سوپر هیترهای بویلر و لوله هایی که در دماهای بالای 460 C کار می کنند، استفاده می شوند.آنچه در این کاربردها نیاز است،مقاومت در برابر گازهای کوره و اکسیداسیون، مقاومت خوردگی توسط گازهای گرم، استحکام خزشی بالا و بدون تردی تمپر می باشند.در صنایع شیمیایی فولاد با 0.5 % Mo بکار می رود که قابلیت جوشکاری بالایی نیز دارد.
در برخی از فولادهای تند بر ، مولیبدن می تواند جایگزین تنگستن شود.در این جایگزینی، یک قسمت مولیبدن بجای دو قسمت وزنی تنگستن اضافه می شود.البته شایان ذکر است که مولیبدن بطور کامل جایگزین تنگستن نمی شود بلکه عموما این فولادها دارای 6% Mo و 6% W می باشند و در فولادهای با مولیبدن بیشتر،2% W و 9 % Mo حضور دارند.در دماهای بالا ، این فولادها سختی مشابهی با فولادهای تند بر تنگستن دار داشته ولی فولادهای مولیبدن دار به دکربوریزاسیون سطحی در شرایط حرارت دهی در کوره های اکسیدی بسیار حساسند . برای حل این مشکل ، از حمام های نمک ،ا تمسفر کنترل شده کوره ها و یا پوشش های بوراکسی استفاده می کنند.
مولیبدن مقاومت خوردگی فولادهای کروم و کروم – نیکل را می افزاید.افزودن 3 % Mo به فولاد 8/18 استحکام در دماهای بالا را بهبود بخشیده و مقاومت در برابر محلول های سولفیدی ، سولفاتی و استات و مقاومت خوردگی اسید استیک را اصلاح کرده و حفره دار شدن در طی خوردگی در آب دریا را می کاهد.مولیبدن موجود در فولاد 8/18 خوردگی تماسی یا هوازدگی را می کاهد.این نوع خوردگی از ذرات خارجی موجود در محلول خورنده که با فولاد در تماس هستند، نشات می گیرد.
با افزودن Mo به فولادهای کم کربنی و مس دار نرخ خوردگی اتمسفری کاسته می شود. با حضور این عنصر ، گرافیت زایی دردماهای بالا کند می شود. مولیبدن ، نیتریدهای بسیار مقاوم در برابر سایش در فولاد تشکیل می دهد و بنابراین در فولادهای ابزار نیتریده شونده استفاده می شود.
در چدنها پایدار کننده متوسط کاربیدهاست. مولیبدن عنصر بسیار مفیدی در افزایش استحکام و چقرمگی چدنهاست.درصد افزوده شده به چدنها از این عنصر 0.25-1.25 % می باشد.در مقاطع بزرگ و متوسط اثر پایدار کنندگی پرلیت داشته و از اینرو یکنواختی در ساختار را در پی دارد و در عوض استحکام و سختی را افزایش میدهد. در مقاطع نازک، مولیبدن باعث ارتقای ساختار بینیتی سوزنی می شود.
وقتی مولیبدن بهمراه نیکل به چدن اضافه می شود،ساختار سوزنی شکل در کل ضخامت تشکیل می شود ولی اگر عنصر آلیاژی بیشتر باشد، مارتنزیت تشکیل خواهد شد.اثر مس همراه مولیبدن مشابه اثر نیکل است اما درصد مس تا حد امکان بایستی پایین باشد تا بطور کامل در محلول قرار بگیرد.چدنهای سوزنی شکل استحکام و سختی بالایی دارند و در کاربردهایی که نیاز به مقاومت خستگی دارند مثل میل لنگ استفاده می شوند.
سختی پذیری چدن مولیبدن تا حد زیادی در حضور مولیبدن در ترکیب آن بهبود می یابد و می تواند اثر مبردی نیز داشته باشد.مولیبدن کاربیدزا بوده و در کنار کروم و وانادیم جدایش می یابد و در یوتکتیک فسفید قرار می گیرد.Cr,V و P در چدنهای سوزنی مفید و دلخواه نمی باشند.
چدنهای با درصد کربن کل 3.35% ، 2.25 %Si و 0.50 % Mo در پیستونهای موتور ماشین بکار می رود.چدنهای مولیبدن دار در قالبهای فورج استفاده می شوند که بایستی استحکام گرم و مقاومت سایشی خوب داشته باشند
نیوبیوم فلز داکتیل و خاکستری روشن است که وقتی به مدت طولانی در دمای اتاق در تماس با هوا قرار گیرد،به رنگ متمایل به آبی در می آید.برای نگهداری این فلز حتی در دماهای متوسط باید از محیط محافظ استفاده شود. اکسیداسیون این فلز در هوا از دمای 200 C آغاز می شود.
نیوبیوم مصارف متعددی ارد. در فولادهای زنگ نزن و بسیاری از آلیاژهیا غیرآهنی استفاده می شود.مقدار قابل ملاحظه ای از نیوبیوم به صورت فرونیوبیوم و یا نیوبیوم-نیکل در سوپرآلیاژهای پایه آهن،نیکل و کبالت در قطعات موتور جت و تجهیزات احتراق استفاده می شود.هم چنین نیوبیوم در دماهای زیر صفر در ابررساناها بکار می رود.
نیوبیوم به معنای دخترتانتالوس از Niobe گرفته شده است که در سال 1801 توسط چارلز هچت (Charles Hatchett) کشف شد.هچت ، نیوبیوم را از سنگ معدن کلومبیتی بدست آورد که در سال 1750 توسط جان وین تروپ (John Winthrop) برای وی ارسال شده بود. بین دو عنصر نیوبیوم و تانتالوم اختلافهای گمره کننده ای وجود دارد،و از طرفی این اختلافها تا 1846 کشف نشده بود،در این ســــــــــــــال بود که هنریخـــــت روز(Heinricht Rose) و جین چـارلز گــــالی سارد مارگــــــــینت(Jean Charles Galisard de Marigance) دوباره این عنصر را کشف کردند ولی ایشان از کارهای هچت اطلاعی نداشتند.از اینرو نام متفاوت نیوبیوم بر روی آن گذاشتند.در سال 1846 بود که کریستن بلومسترند(Cristian Blomstarnd) توانست با احیاء کلرید نیوبیوم بوسیله حرارت دادن در اتمسفر هیدروژن به نیوبیوم خالص دست یابد.
نيوبيوم يا همان كلمبيوم در سالهاي اخير به عنوان عنصر پايدار كننده كاربيد در فولادهاي زنگ نزن و عنصر استحكام زا در آلياژهاي پايه كبالت و نيكل در دماهاي بالا محسوب مي شود.وزن اتمي آن 93 با نقطه ذوب 2468 C است. ساختار كريستالي bcc است و در فولاد فريت زاي قوي است.تمايل تركيب نيوبيوم با كربن زياد بوده ولي نسبت به اكسيژن و نيتروژن تمايل متوسطي دارد.با افزودن نيوبيوم در فولاد ،كاربيد نيوبيوم سريعا تشكيل مي شود. با رسوب كاربيد نيوبيوم و ذرات كربونيتريدي در زمينه فريتي ،استحكام افزايش خواهد يافت.
در فولادهاي آستنيتي ،براي بهبود مقاومت خوردگي بين دانه اي و افزايش خواص مكانيكي در دماهاي بالا استفاده مي شود.در فولادهاي مارتنزيتي ، نيوبيوم سختي را كم كرده و مقاومت به تمپر را افزايش ميدهد.
مقدار نيوبيوم مورد نياز در فولادهاي كربني و كم آلياژي كم بوده و در حدود 0.05 % نيوبيوم ، افزايش قابل توجهي در استحكام فولاد را در پي دارد.علاوه بر آن ، اگر ميزان آن بهمراه ساير عناصر كنترل شود ، اندازه دانه فريت اصلاح شده و چقرمگي در دماهاي پايين اصلاح خواهد شد.اغلب اين عناصر همراه نيتروژن و واناديم به فولاد اضافه مي شود.اين عنصر تشكيل رسوبات كمپلكس كربونيتريد واناديم و نيوبيوم مي دهند.در برخي فولادهاي HSLA نيوبيوم تا %0.15 وجوددارد.اگر درصد نيوبيوم از % 0.1 فراتر رود، مشكل ترك سرد و افت چقرمگي منطقه تحت تاثير جوش در جوشكاري را خواهيم داشت.
رفتار انحلال و رسوب تركيبات نيوبيوم با واناديم متفاوت است.در سرد كردن آهسته آستنيت از دماي بالا ، همزمان با انحلال نيوبيوم ، كاربيد نيوبيم در دماهي بالاي 1200 C رسوب مي كند.به دليل رسوب اين كاربيد در دماهاي بالا ، امكان درشت شدن ذرات وجود دارد كه تاثير منفي بر استحكام دارد.
همانطوریکه در بالا ذکر شد، فولادهای نیوبیوم دار بخاطر تشکیل ترکیب بین فلزی قابل حل Fe3Nb2 دارای استحکام بالایی می باشند.این فولادها دانه ریز بوده و در نتیجه خواص انرژی ضربه دردماهای پایین بهتری دارند.مزیت دیگر استفاده از نیوبیوم در ترکیب فولادها، عدم حضور آخالهای اکسیدی نامطلوب در ریزساختار می باشد.فولادهای دانه ریز نیوبیوم دار ، در مواردی استفاده می شوند که کربوریزه می شوند. این فولادها به دماهای بالا احتیاج دارند تا دانه هایشان رشد کنند فلذا در منطقه دمایی سخت گردانی، ریزبودن دانه ها حفظ خواهد شد.
با افزودن نیوبیوم به ترکیب فولادهای کربنی متوسط نیمه کشته،استحکام تسلیم 9 ton/in2 و استحــکام کششی 7 ton/in2 افزایش می یابند.این ورقها در تولید ورقها کاربرد وسیعی پیدا کرده اند. این نوع ورق ها کار گرم شده و در خطوط نفت و سازه های سبک استفاده می شوند.
با رسوب ترکیب بین فلزی Fe3Nb2 از دمای انحلال و به دنبال آن پیر سازی در دمای 500-650 C ، نیوبیوم استحکام خزشی فولادهای بسیار کم کربن را می افزاید.میزان افزودن نیوبیوم برای بهبود استحکام خزشی متغیر بوده ولی مرسوم است که حداقل 25 برابر درصد کربن اضافه شود.با کاهش نسبت نیوبیوم به کربن ، استحکام خزشی شدیدا افت می کند و برای دستیابی به استحکام خزشی خوب ،باید درصد کربن در حد پایین نگه داشته شده باشد.اما اگر در دمای اتاق،استحکام مقدم بر استحکام خزشی باشد،نسبت نیوبیوم به کربن می تواند برابر8:1 باشد.
در سیستم آلیاژی آهن-کربن-نیوبیوم، با افزایش درصدNb درصد فاز آستنیت در ریزساختار شدیدا کاهش می یابد. فلذا در این نوع فولادها ، برای آستینه کردن بایستی درصد کربن فولاد کمتر باشد.
افزودن نیوبیوم سختی پذیری فولاد را می کاهد چرا که با تشکیل کاربید نیوبیوم ، غلظت کربن کاهش می یابد.از طرفی اگر نیوبیوم در محلول جامد باشد، از انجام استحاله جلوگیری می کند. بنابراین دمای آستنیته کردن و زمان نگهداری مستقیما مربوط به سختی پذیری فولاد دارد.کاربید نیوبیوم سختی پذیری را می کاهد و از اینرو بیشتر به ترکیب فولادهای به سختی پذیری نسبتا بالا که بایستی جوشکاری شوند اضافه می شود تا از ترک برداری زیر جوش جلوگیری کند.
در دمای بالای 400 C ، نیوبیومی که در فولادهای نیتریدی وجود دارد، با نیتروژن واکنش می دهد.کاربید نیوبیوم و نیوبیومی که بیش از حد انحلال است در تشکیل نیترید شرکت نمی کند و فقط نیوبیوم موجود در محلول جامد در تشکیل نیترید شرکت می کند. در فولادهای کربنی ساده ، نیوبیوم سختی سطحی را می افزاید.فولادهای با 6-4 درصد کروم در هوا سخت می شوند و به زمان آنیل زیادی نیاز دارند و در هنگام جوشکاری ترک بر می دارند.این مشکل در این نوع فولادها را می توان با کاهش درصد کربن تا حد زیادی حل کرد.البته این مشکل را با اضافه کردن تیتانیوم ،آلومینوم و نیوبیوم نیز می توان حل کرد.که در این میان Nb ترجیح داده می شود چرا که آخالهای مضر در ترکیب را تشکیل نمی شوند..میزان نیوبیومی که به ترکیب فولاد اضافه می شود،10-7 برابر درصد کربن است.فولادهای نیوبیوم دار کار گرم شده با سرد کردن از دمای 1000 C هم چنان نرم می مانند.ولی به علت انحلال جزیی کاربیدهای نیوبیوم ممکن است بمقدار جزیی سخت گردانی شوند.برای آنیل مجدد کافی است تا دمای 800 C حرارت داده و سپس در هوا سرد شوند.
برای کاهش تمایل به هوا سختی فولادهای با 16-18 % Cr درصدی از نیوبیوم به ترکیب آنها اضافه می شود.اینکار عملیات حرارتی راآسان کرده و داکتیلیتی و جوشکاری را بهبود می بخشد.برای این منظور 1 % Nb اضافه می شود(10 برابر درصد کربن) افزوده می شود که از لحاظ هزینه گران شدن فولاد را در پی دارد و از اینرو در مصارف خاص استفاده می شود.
بعد از حرارت دادن فولاد 18/8 از منطقه دمایی 400-900 C خوردگی بین دانه ای رخ میدهد.این کاهش موضعی در مقاومت خوردگی ناشی از این واقعیت است که اکثر این فولادها دارای درصد کربن بالایی بوده که سبب میشود با سرد کردن در هوا کاربید رسوب کند.عموما اعتقاد بر اینست که علت خوردگی بین دانه ای تخلیه محلول جامد از کروم در مجاورت مرز دانه است. ولی تحقیقات اخیر نشان داده است که کاربیدهای کروم غیرتعادلی با مقاومت خوردگی کمتر تشکیل می شود و نیازی به تخلیه کروم نیست.افزودن عناصر کاربیدزای قوی مثل Nb وTi موجب رسوب و تشکیل کاربیدهای مرجح شده و از خوردگی بین دانه ای جلوگیری می کند پایدارسازی معمولا تحت تاثیر نیوبیوم و یا تیتانیوم می باشد.اگر مقاومت در برابر اسید نیتریک قوی نیاز باشد،نیوبیوم بهتر است. اگر فولاد تمیز لازم باشد ، پایدار سازی با تیتانیوم چندان خوب نیست زیرا آخالهای اکسید تیتانیوم در فولادهای عملیات حرارتی شونده وجود داشته و از طرفی تیتانیوم در حین جوشکاری اکسید می شود.
اثر نیوبیوم بر استحکام خزشی بیشتر از تیتانیوم بوده و در تولید فولادهای آستنیتی دمای بالا کاربرد وسیعی یافته است.نسبت Nb/C باید 10:1 باشد تا از پایداری کامل اطمینان پیدا کرد. اما اگر شرایط چندان بحرانی نباشد، می توان از نسبتهای پایین نیز استفاده کرد.
در فولادهای زنگ نزن ،نیوبیوم 8 تا 10 برابر درصد کربن بوده و تاثیر قابل توجهی بر استحکام کششی ،داکتیلیتی و یا چقرمگی ندارد.در شمش های بزرگ جدایش کاربیدهای نیوبیوم دور از احتمال نیست وکاهش داکتیلیتی در مرکز قطعات فورج را در پی دارد.حتی اگر از نسبت زیاد Nb/C استفاده شود، نیز داکتیلیتی کاهش می یابد.
معمولا در فولادهای زنگ نزن 18/8 که با نیوبیوم پایدار شده است،برای کاهش نرخ کارسختی ،درصد بالاتری از 8 % نیکل وجود دارد. این قاعده برای آسانی کار گرم بدلیل گسترش فریت حاصل از افزودن نیوبیوم لازم بنظر می رسد.
مقادیر کم تانتالوم اثری بر خواص مکانیکی فولادهای زنگ نزن 18/8 پایدار شده با نیوبیوم ندارد.درصدی از تانتالوم می تواند جایگزین مقدار کمی از نیوبیوم شود بدون آنکه بر استحکام و داکتیلیتی اثر منفی داشته باشد.این از جهاتی بهتر نیز است چرا که اکثر محصولات نیوبیوم دارای تانتالوم می باشند و بایستی بخاطر داشت که تانتالوم فقط یک دوم تاثیر نیوبیوم را دارد.اگر نسبت نیوبیوم به تانتالوم در فروآلیاژ از 8:1 کمتر باشد، باید نسبت مجموع تانتالوم و نیوبیوم به کربن 10:1 باشد.به آلیاژ مغناطیس دایم نوع Alni نیوبیوم اضافه می شود و مغناطیس های دایم AlcomaxIII و AlcomaxIV به ترتیب 0.7 و 2.4 درصد نیوبیوم دارند. هر دو این آلیاژها از Alcomax که نیوبیوم ندارد، خواص مغناطیسی بهتری دارند.
نیوبیوم معمولا به چدنها اضافه نمی شود ولی معمولا میزان کمی بخاطر قراضه های حاوی نیوبیوم در ترکیب آنها وجود دارد.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 14:29 |
فلز ماده‌ای است که می‌توان آن را صیقل داده و براق کرد، یا به طرح‌های گوناگون در آورد و از آن مفتول‌های سیمی ظریف تهیه کرد. فلز جسمی است که آزمایش‌های مربوط به گرما و مهم‌تر از همه جریان الکتریکی را به خوبی هدایت می‌کند. فلزات با یکدیگر فرق زیادی دارند، از جمله در رنگ و سختی و نرمی، تعدادی از آنها ممکن است به آسانی خم شده و یا خیلی محکم و مقاوم باشند

شکل واقعی فلزات
شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها، یون‌ها کاملاً پهلوی هم قرار دارند، و معمولاً تراکم در فلزات زیادتر از دیگر مواد است. اختلافات عمده فلزات و دیگر جامدات و مایعات.فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته هستند. به این سبب فلزات از دیگر گروه‌های عناصر، کاملاً متفاوت دارد.
اختلاف عمده فلزات و دیگر جامدات و مایعات، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند «رسانش گرمایی فلزات).
مقاومت مکانیکی فلز
مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده، نشکند. بسیاری از فلزات، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.
علت درخشش فلزات
دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل، نه تنها درخشان بلکه سفید به نظر می‌آیند.
علت تغییر شکل فلزات
بسیاری از فلزات در حرارت ویژه‌ای، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده، قردار، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسان گردد. بسیاری از فلزات در هنگام سرد بودن، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده، ولی اگر فلز گرم شود، انجام هر دو آسان است.
جستارهای وابسته
  • آلیاژ
  • اجسام رسانا
  • الکترون
  • انبساط جامدات
  • انتقال گرما
  • جامد
  • تنگستن
  • رسانش الکتریکی فلزات
  • فلزات مایع
  • مقاومت مکانیکی
بسیاری از قطعات آلومینیمی به همان روش و با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است آولومینم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند.
آلومینم دارای فنریت زیادی است وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد.اغلب عملیات شکل دادن آلومینیم در حالت سرد انجام می گیرد زیرا وقتی پوفیلی با رویه نازک و روق های نازک حرادت داده می شوند امکان تاب خوردن آنها وجود دارد نیروی لازم برای تغییر شکل آلومینیم کمتر از فولاد است نرمی آلومینیم به خود ماده ( نوع آلیاژ ) و حالت آن بستگی دارد وضعیت آلومینیم مانند هر فلز دیگری در اثر کار سرد تغییر می کند تاثیر کار سرد بر آلومینم از این قرار است ماده مستحکم تر و سخت تر می شود در قطعه تنش تولید می شود اگر تغییر شکل از ظرفیت تغییر شکل پذیری فلز بیشتر شود کار سرد مممکن است باعث ترک خوردن آن شود راحت ترین ماده آلومینیمی از نظر تغییر شکل و نرمی آلویمینم حالص آلومینیم تصفیه شده و آلیاژ Al-Mn در حالت نرم است.
آلومینیم خالص و آلیاژهای آلومینیم در حالت نیمه سخت و آلیاژهای پیر سختی پذیر در حالت نرم در حال کار پذیر هستند گر چه کارپذیری آن ها کمتر از موادبیشتر شاد شده است آلیاژ های آلومینیم در حالت سخت یا حالات کاملا پیر سهت شده به مقدار کمی کار پذیرند و به طور کلی کارپذیری آنها بسیار مشکل است.آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود.
آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند. آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند .
آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند استکام بالای آلیاژهای Al-Li ناشی از قابلیت آن ها برای پیر سختی است مهمترین زمینه های کاربرد آلومینم در صنایع عبارتند از :1- مصارف خانگی نظیر ظروف 2- مصارف ساختمانی نظیر در و پنجره 3- مصارف تاسیساتی نظیر لوله و اتصالات 4- مصارف صنایع فضایی5- مصارف اتومبیل سازی 6- مصارف کشتی سازی بدنه پروانه پمپ 7- مصارف تجاری و بسته بندی چای مواد لبنی ضخامت تا 10 میکرون 8- مصارف الکتریکی : نظیر کابل ها .
بسیاری از قطعات آلومینیمی به همان روشو با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است.
آلومینیوم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند آلومینم دارای فنریت زیادی است.
وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد .
انواع تغییر شکل:
بررسی مکانیزمهای ایجاد ترک و مکانیزمهای متفاوت رشد سریع یا در حد بحرانی ترک و رشد آرام و پایینتر از رشد بحرانی از اهمیت ویژه صنعتی برخوردارند. بررسی فعل و انفعالات فیزیکی که به هنگام شکست روی میدهد چندان ساده نیست، زیرا چگونگی ایجاد ترک و رشد آن و بالاخره نوع شکست در مواد کریستالی به جنس، ساختار شبکه کریستالی، ریزساختار و از آنجا که قطعات معمولا به طور کامل سالم و بدون عیب نیستند به نوع، اندازه و موقعیت عیب، نوع و حالت تنش وارد بر آنها بستگی خواهد داشت. معمولا شکست درفلزات به شکست نرم و شکست ترد تقسیم می شود.در صنعت هدف، کنترل و به تعویق انداختن شکست است.
شکست نرم:
بسیاری از فلزات و آلیاژهای آنها، به ویژه آنهایی که دارای شبکه fcc هستند، مانند آلومینیوم و آلیاژهای آن، در تمام درجه حرارتها، شکست نرم خواهند داشت. شکست نرم به آرامی و پس از تغییر شکل پلاستیکی زیاد به ازای تنشی بالاتر از استحکام کششی ظاهر میشود. از مشخصات شکست نرم، تحت تاثیر تنش کششی، ظاهر گشتن گلویی یا نازکی موضعی و ایجاد حفره های بسیار ریز در درون قسمت گلویی و اتصال آنها به یکدیگر تا رسیدن به حد یک ترک ریز و رشد آرام ترک تا حد پارگی یا شکست نهایی است
مراحل مختلف شکست نرم در یک فلز انعطاف پذیر
در این نوع شکست علت ایجاد حفرهای ریز در محدوده گلویی میتواند تغییر شکل غیر یکنواخت ناشی از ناخالصیهای موجود در ماده اصلی زمینه باشد. لذا با ایجاد حفره های بسیار ریز در محدوده گلویی حالت تنش سه محوری برقرار میشود که منجر به ایجاد ترک میشود .
در طراحی و ساخت اجزای ماشین آلات و در ساختمان سازی، تنشهای وارد بر سازه های فلزی در محدوده الاستیکی انتخاب میشود. بنابراین در کاربرد صنعتی، شکست در حالت تنش استاتیکی در مواد انعطاف پذیر ( داکتیل ) یک پیشامد نامطلوب است.
ترک داخلی در نا حیه نازک شده در نمونه کششی مس با خلوص بالا
شکست ترد:
شکست ترد معمولا در فلزاتی با ساختار کریستالی مکعب مرکزدار(bcc ) و هگزاگونال متراکم (hcp) و آلیاژهای آنها در درجه حرارتهای پایین ( معمولا پایینتر از دمای معمولی محیط ) و سرعتهای تغییر شکل بالا بطور ناگهانی ظاهر میشود. شکست ترد در امتداد صفحه کریستالی معینی، به نام صفحه کلیواژ، انجام میگیرد. در شکست ترد عموما تغییر شکل پلاستیکی قابل توجهی در منطقه شکست مشاهده نمیشود.نظریه شکست ابتدا علت شکست را این چنین بیان کرد که تمام پیوندهای اتمی در امتداد صفحه شکست هم زمان با هم گسیخته میشوند. بدین ترتیب که با ازدیاد تنش فاصله اتمها از یکدیگر دور میشوند ودر نهایت به محض اینکه تنش به حد تنش شکست ( تنش بحرانی ) رسید، در نتیجه گسستن تمامی پیوندهای اتمی در صفحه عمود بر امتداد کشش، شکست پدیدار میشود.در جدول زیر تنشهای بحرانی عمود بر صفحات کریستالی معین در چند تک کریستال برای شکست داده شده است.
شکست ترد وتعدادی از تک کریستالها
عملا تنش لازم برای شکست مواد لازم فلزی به اندازه قابل توجهی کمتراز تنش شکست محا سبه شده ا ز طریق تئوری است . بنابراین فعل وانفعال شکست نمیتواند از طریق گسستن همزمان تمامی پیوند های اتمی درامتداد سطح شکست صورت گیرد. بد ین ترتیب فعل و انفعالات شکست عملا بیشتر از طریق ایجاد یک ترک بسیار ریز به عنوان منشا ترک و رشد و پیشروی آن انجام میگیرد . برای پیشروی ترک د ر یک ماده لازم است مقدار تنش متمرکز در نوک ترک از استحکام کششی در آن موضع فراتر رود . د ر مواردی که شرایط برای پیشروی منشا ترک مساعد نیست ترک می تواند متوقف گشته وشکست پدیدار نشود.

تئوری گریفیت:
او چنین بیان می کند که در ماده ای که حاوی تعدادی ترک بسیار ریز باطول معینی است ، همین که مقدار تنش متمرکز درنوک ترک ، حداقل به مقدار تنش لازم برای گسستن پیوندهای اتمی د رآن موضع ( استحکام کششی ) رسید، شکست ظاهر میشود . باپیشرفت ترک ، سطح ترک افزایش می یابد . این مطلب بدین معنی است که برای ایجاد این سطح باید انرژی به کار برده شود . این مقدار انرژی از انرژی تغییر شکل کسب می شود.
بنابراین فرضیه گریفیت علت پدیدار گشتن شکست ترد را وجود ترکها و خراشهای سطحی بسیار ریز ( با اندازه بحرانی) و پائین بودن استحکام را د رآن مواضع می داند . اماموادب هم وجود دارد که بد ون داشتن ترکهای سطحی بسیار ریز شکست ترد د ر آنها پدیدار می شود . بنابراین د ر این گونه مواد هم باید فعل وانفعالاتی صورت گیرد که موجب به وجود آمدن تمرکز تنش وفراتر رفتن موضعی مقدارتنش از استحکام کششی ود رنتیجه ایجاد منشا ترک شود. زنر و اشترو مکانیزم این فعل و انفعال راچنین بیان داشتند که در حین تغییر شکل پلا ستیکی نابجاییها در پشت موانع ( مانند مرزدانه ها ومرز مشترک د و قلوییها ) تجمع یافته وبدین ترتیب در زیر نیم صفحه های مربوط به این نابجاییها ترکهای بسیار ریزی ایجاد می شود .
این ترکهای بسیار ریزهمچنین می تواند محلهای مناسبی برای نفوذ عناصری مانند اکسیژن ، ازت وکربن درآنها وایجاد فازهای ثانوی ترد ودر نتیجه شکست ترد باشند. چنین رفتار ترد د ر شکست ترد مس باوجود عناصری مانند آنتیموان وآهن همراه بااکسیژن مشاهده شده است .
مکانیزم ایجاد ترک از طریق نابجاییها
الف) تجمع نابجائیها در پشت مرز دانه ها (Zener)
ب) تلاقی نابجائیها (Cottrell)
کاترل مکانیزم د ومی رابرای ایجاد منشا ترک ارائه کرد. بد ین صورت که منشا ترکهای ریز می تواند د ر اثر تلا قی د و صفحه لغزش بایکد یگر ، د ر نتیجه د ر هم آمیختن نابجاییها د ر محل تلا قی آن د و صفحه و ایجاد نابجاییها ی جد ید ، ناشی شود، این مکانیز م می تواند د لیلی برای ایجاد سطح شکست ( صفحه کلیواژ ) مشاهده شده د ر صفحه (001 ) د ر فلزات باساختار کریستالی مکعب مرکزدار (bcc ) باشد.
درفلزات چندین کریستالی شکست تر د میتواند به صورت برون دانه ای ( بین دانه ای) و یا درون دانه ای باشد.شکست برون دانه ای در بین دانه ها د ر امتداد مرز دانه ها ظاهر می شود. د لیل این نوع شکست بیشتر میتواند وجود ناخالصیها یا جدایش و رسوب عناصر یا فازهای ترد و شکننده د ر امتداد مرز دانه ها باشد. شکست ترد درفلزات بیشتر به صورت درون دانه ای است . بدین ترتیب که ترک د ر داخل دانه ها گسترش می یابد. د رجه حرارت و سرعت تغییر شکل تاثیر مخالفی برروی نوع شکست خواهد داشت ، به طوری که باکاهش درجه حرارت و ازد یاد سرعت تغییر شکل ، تمایل برای شکست ترد به صورت درون دانه ای د ر حین خزش د ر نتیجه تغییرات شیمیائی دراثر اکسیداسیون ممکن خواهد بود. چنانچه اکسیداسیون برون دانه ای در فلزات صورت گیرد، تنش شکست بسیار کاهش می یابد.
تافنس شکست:
چنانچه در جسمی ترک وجود داشته باشد، د راین صورت استحکام آن جسم استحکامی نیست که از طریق آزمایش کشش به دست می آید ، بلکه آن کمتر است. د راین صورت مسئله ترک واشاعه آن اهمیت پیدا می کند. در اینجا تافنس شکست به رفتار مکانیکی اجسام ، شامل ترک یاد یگر عیوب بسیار ریز سطحی یاداخلی مربوط میشود. البته م یتوان اذعان کرد که عموما تمام اجسام عاری از عیب نبوده و شامل عیوبی هستند . دراین صورت آن چه که د رطراحی و اتنخاب مواد برای ما اهمیت صنعتی ویژه ای دارد ، مشخص کردن حد اکثر تش قابل تحمل برای جسمی است که شامل عیبی با شکل و اندازه معینی است . بنابراین به کمک تافنس شکست می توان توانایی جسمی که بطور کامل سالم نیست راد رمقابل یک بار خارجی وارد برجسم سنجید.معمولابرای تعیین تافنس شکست از آزمایش کشش برروی نمونه آماده شده ای از جنس معین که ترکی بطول وشکل معینی برطبق استاندارد درسطح یاداخل نمونه بطورعمد ایجاد شده استفاده می شود، شکل نمونه به گونه ای د ر دستگاه آزمایش کشش قرار می گیرد که ترک ریز به صورت عمود برامتداد تنش کششی قرار گیرد.
اکنون این سئوال مطرح می شود که به ازای چه مقداری از تنش s جوانه ترک مصنوعی د ر داخل جسم گسترش می یابد تاحدی که منجر به شکست نمونه شود . در اطراف این ترک تنش به صورت پیچیده ای توزیع می شود. حداکثر تنش کششی ایجاد شده د ر راس ترک بزرگتر از خارجیs است و تنش بحرانی ( sc ) نامیده میشود.تا زمانی که sc کوچکتراز استحکام کششی است نمونه نمی شکند .با وارد آمدن تنش به نمونه د ر محدوده الاستیکی ابتدا انرژی پتانسیل در نمونه ذ خیره می شود . موقعی که ترک شروع به رشد می کند بین مقدارکاهش انرژی پتانسیل ذخیره شده د رنمونه وانرژی سطحی ناشی از رشد ترک تعادل برقرار است . تازمانی رشد ترک ادامه پیدا می کند که از انرژی الاستیکی کاسته و به انرژی سطحی افزوده شود، یعنی تالحظه ای که شکست ظاهر گرد د .ابتدا گریفیث با توجه به روابط مربوط به انرژی پتانسیل ذ خیره شده و انرژی سطحی ترک در ماده الاستیکی ،مانند شیشه و تغییر و تبد یل آنها به یک د یگررابطه زیر را ارائه کرد:
s=√2Egs ∕ pa
این رابطه برای حالت تنش د و بعدی برقرار است . gs د ر این رابطه انرژی سطحی ویژه و E مد ول الاستیکی ماده است .برای حالت تغییر شکل د و بعدی ( حالت تنش سه بعدی باصرفنظر از تغییر شکل د ربعد سوم ) رابطه زیر را ارائه کرد:
(s = √ 2Egs ∕ pa(1_ n²

لازم به تذکر است که رابطه گریفیث برای یک ماده الاستیکی شامل ترک بسیار ریز باراس ترک تیز ارائه شد و این رابطه ترک باشعاع راس ترک 0≠r را شامل نمی شو د . بنابراین رابطه گریفیث شرط لازم برای تخریب است ، اما شرط کافی نیست .
در رابطه گریفیث انرژی تغییر شکل پلاستیکی در نظر گرفته نشده است . ازاین ر و اروان انرژی تغییر شکل پلاستیکی ، که برای فلزات و پلیمرها در فرآیند شکست قابل توجه است رادر نظر گرفت و رابطه زیر راارائه کرد:
s = √ 2E(gs+gp) ∕ pa
سپس اروین رابطه گریفیث را برای موادی که قابلیت تغییر شکل پلاستیکی دارند ، به کار برد و باتوجه به میزان رها شدن انرژی تغییر شکل الاستیکی در واحد طول ترک د رحین رشد (G) رابطه زیر را برای حالت تنش د و بعدی ارائه داد :
s = √ EG ∕ pa
بامقایسه با رابطه قبل (gs+gp) 2 = s است . بد ین ترتیب د ر لحظه ناپایداری ، وقتی میزان رها شد ن انزژی تغییر شکل الاستیکی به یک مقدار بحرانی رسید ، شکست پدیدار می شود. در این صورت در لحظه شکست :
برای حالت تنش دو بعدی Gc=pasc²∕E
برای حالت کرنش دو بعدیGc= pa(1- n² ) sc² ∕ E = Kc² ∕ E
Gcمقیاسی برای تافنس شکست یک ماده بوده و مقدار آن برای هر ماده ای ثابت و معین است . بامعلوم بودن این کمیت می توان مشخص کرد که مقدارa به چه اندازه ای باید برسد تاجسم بشکند . بدین ترتیب این رابطه در مکانیزم شکست اهمیت دارد. هرچقدر Gcکوچکتر باشد ، تافنس کمتر یا به عبارتی ماده تردتراست .رابطه زیر را برای حالت تنش دو بعدی می توان به صورت زیر نوشت :
Gc = √ EGc ∕ pa
و برای شرایط تغییر شکل نسبی د و بعدی رابطه زیر ارائه شده است :
(s = √ EGc ∕ pa(1_n²
تعیین تنش شکست بحرانی sc کار چندان ساده ای نیست . اما می توان گفت که به ازای تنشهای جسم باوجود ترک هنوز نمی شکند . از این رو تنش درحد پاینتر از مقدار بحرانی با ضریب شدت تنش K توصیف و رابطه زیر برای آن ارائه شد ه است :
K= fs√ pa
در این رابطه f ضریب هند سه نمونه معیوب ، s تنش اعمالی وa اندازه عیب است ، در شکل تئوری گریفیث اگر عرض نمونه نامحدود فرض شود ، دراین صورت 1 = f است . با انجام آزمایش روی نمونه ای با اندازه معینی از عیب می توان مقدار k ، که به ازای آن ترک شروع به رشد کرده و موجب شکست میشود ، را تعیین کرد . این ضریب شدت تنش بحرانی به عنوان تافنس شکست نامیده میشود و به Kc نشان داده میشود .اماازطرفی ، همچنین به ازای تنش ثابتی درحد کوچکتر از استحکام کششی باافزایش کند ترک ، طول ترک (a) میتواند به مقدار بحرانی برسد و به ازای آن نمونه تخریب شود.
تافنس شکست (Kc) از فولادی با تنش تسلیم MN.m2 2070 با افزایش ضخامت تا تافنس شکست در حالت تغییر شکل صفحه ای (دو بعدی) کاهش می یابد.
کمیتهای Kcو Gc بستگی به ضخامت نمونه دارد. همین که ضخامت نمونه افزایش یافت ، تافنس شکست Kcتا مقدار ثابتی کاهش می یابد ، این مقدار ثابت Kc تافنس شکست تغییر شکل نسبی دو بعدی KIc نامیده می شود . Kc کمیتی مستقل از اندازه نمونه است و در محاسبه استحکام که مستلزم اطمینان بالاست ، به کار میرود .
بنابراین در طراحی در محاسبات باید روابط زیر توجه شود :
s< Kc ∕ √ pa
و در حالت تغییر شکل دو بعدی ( حالت تنش سه بعدی باناچیز بودن تغییر شکل در بعد سوم):
s< K1c ∕ √ pa
کمیتهای K1c و G1c نه فقط برای گسترش ترک ترد ونرم تعریف شد ه است ، بلکه همچنین برای شکست تحت شرایط تنش خوردگی ، خستگی و خزش نیز به کار میرود. در جداول زیر تافنس شکست تعدادی از مواد ارائه شده است .
تافنس شکست تعدادی از مواد طراحی
تافنس شکست در حالت تغییر طول نسبی دومحوری (KIc) تعدادی از مواد
اگر حد اکثر اندازه عیب موجود در قطعه a و مقدار تنش وارد برآن s باشد ، میتوان ماده ای را باتافنس شکست Kc یا K1c به اندازه کافی بالا ، که بتواند از رشد ترک جلوگیری کند، انتخاب کرد. همچنین اگر حداکثر اندازه مجاز عیب موجود درقطعه و تافنس شکست ماده ، یعنی Kc یا K1c، معلوم باشد در آن صورت میتوان حداکثر تنش قابل تحمل برای قطعه رامشخص کرد. از این رو میتوان اندازه تقریبی قطعه را تیین کرد، آن چنان که از پایینتر آمدن حداکثر تنش ایجاد شده از حد مجاز، اطمینان حاصل شود.
همچنین اگر ماده معینی انتخاب و اندازه قطعه و تنش وارد برآن مشخص شده باشد ، حد اکثر اندازه مجاز عیب قابل تحمل را میتوان به طور تقریب بدست آورد.
توانایی هرماده در مقابل رشد ترک به عوامل زیر بستگی دارد:
1- عیوب بزرگ ، تنش مجاز را کاهش میدهد. فنون خاص تولید، مانند جداسازی و کاهش ناخالصیهااز فلز مذاب و فشردن ذرات پودر در حالت داغ در تولید اجزای سرامیکی همگی میتواند موجب کاهش اندازه عیب شود و تافنس شکست را بهبود ببخشد.
2- در فلزات انعطاف پذیر ، ماده مجاور راس ترک میتواند تغییر فرم یابد . به طوری که سبب باز شدن راحت راس ترک و کاسته شدن از حساسیت آن شده و ضزیب شدت تنش را کاهش داده و از رشد ترک جلوگیری میکند معمولا افزایش استحکام فلز انعطاف پذیری را کاهش میدهد و سبب کاهش تافنس شکست میشود ، مانند سرامیکهاوتعداد زیادی از پلیمرها ، تافنس شکست بسیار پایینتر از فلزات دارند.
3- مواد ضخیمتر وصلبتر دارای تافنس شکست کمتر از مواد نازک هستند.4- افزایش سرعت وارد کردن بار، مانند سرعت وارد شدن بار د ر آزمایش ضربه ، نوعاتافنس شکست جسم را کاهش میدهد.5- افزایش درجه حرارت معمولا تافنس شکست راافزایش میدهد، همان گونه که د ر آزمایش ضربه این چنین است .6- با کوچک شدن اندازه دانه ها معمولا تافنس شکست بهبود مییابد ، د ر حالی که با وجود عیوب نقطه ای و نابجاییهای بیشتر تافنس شکست کاهش مییابد. بنابراین مواد سرامیکی دانه ریز میتواند مقاومت به رشد ترک را بهبود بخشند.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 14:25 |
نمودار تعادلی آهن-کربن (Fe-C) راهنمایی است که به کمک آن می‌توان روش‌های مختلف عملیات حرارتی، فرآیندهای انجماد، ساختار فولادها و چدن‌ها و... را بررسی کرد.

قسمتی از این نمودار که در متالورژی اهمیت بیشتری دارد، قسمت آهن-کاربیدآهن (سمنتیت) است.
چون کاربید آهن یک ترکیب شبه‌پایدار است، بنابراین دیاگرام آهن-کربن را سیستم شبه‌پایدار می‌نامند. حالت پایدار کربن در فشار اتمسفر، کربن آزاد (گرافیت) است.

قسمت‌هایی که در نمودار با حروف یونانی مشخص شده‌اند، نشانگر محلول‌های جامد از نوع بین‌نشینی هستند.

تحولات هم‌دما (ایزوترم) در سیستم آهن-کربن شبه پایدار

خطوط افقی در نمودار، نشان دهندهٔ استحاله‌های هم‌دما هستند.

البته باید توجه داشت که غلظت‌ها و دماهای ذکرشده برای آهن-کربن خالص بوده و با حضور عناصر آلیاژی دیگر، این ثابت‌ها تغییر می‌کنند.

آهن آلفا
آهن آلفا یکیازآلوتروپ‌های آهن است. این آلوتروپ از دمای ۲۷۳- درجه سانتیگراد تا ۹۱۰ درجه سانتیگراد پایدار است. این آلوتروپ دارای ساختمان بلوری مکعبی مرکزپر (bcc) است.
ثابت شبکهٔ آهن آلفای فرومغناطیس، ۲/۸۶ آنگستروم است.


به محلول جامد از نوع بین‌نشینی کربن در آهن آلفا α-Fe (آهن مکعبی مرکزپر) فِریت گفته می‌شود.
حداکثر غلظت کربن در فریت حدود ۲/. درصد وزنی و در دمای ۷۲۷ درجه سانتیگراد است.
مقاومت کششی فریت در حدود ۴۰۰۰۰ پسی (psi) است.

آهن بتا

در دمای ۷۶۸ درجه سانتیگراد، آهن آلفای فرومغناطیس به آهن آلفای پارامغناطیس تبدیل می‌شود. این تحول، تحول آلوتروپیک نیست.
گاهی این آهن آلفای پارامغناطیس، آهن بتا خوانده می‌شود.
ثابت شبکهٔ این نوع آهن، ۲/۹ آنگستروم است.

آهن گاما

آهن گاما یکی از آلوتروپ‌های آهن است که در محدودهٔ دمایی ۹۱۲ تا ۱۳۹۴ درجه سانتیگراد پایدار بوده و ساختمان بلوری fcc (مکعبی مرکزپر) دارد.

آهن دلتا

آهن دلتا یکی از آلوتروپ‌های آهن است که از دمای ۱۴۰۱ درجه سانتیگراد تا ۱۵۳۹ درجه سانتیگراد (نقطهٔ ذوب آهن) پایدار است.
آهن دلتا دارای ساختمان بلوری مکعبی مرکزپر (bcc) است. آهن دلتا دارای خاصیت پارامغناطیس بوده و ثابت شبکه‌ی آن بزرگ‌تر از آهن آلفا است.
ثابت شبکهٔ آهن دلتا، ‎۲/۹۳ آنگستروم است.


لدبوریت (به آلمانی: Ledeburit) به مخلوط یوتکتیکی اوستنیت و سمنتیت گفته می‌شود که از مذابی با ۴/۳ درصد کربن در دمای ۱۱۴۷ درجه سانتیگراد تحت یک واکنش یوتکتیکی حاصل می‌شود. از آنجایی که اوستنیت در دمای محیط پایدار نیست و بر اساس یک واکنش یوتکتوئیدی به پرلیت تبدیل می‌شود، بنابراین ساختمان لدبوریت در دمای محیط بصورت پرلیت و سمنتیت خواهد بود.
نام این ساختار از کارل هاینریش آدولف لدبور متالورژیست آلمانی گرفته شده‌است.


پرلیت به مخلوط یوتکتوئیدی فریت و سمنتیت ‌گفته می‌شود.
پرلیت تحت یک تحول یوتکتوئیدی از آهن گاما با ۰/۸ درصد کربن در ۷۲۳ درجه سانتیگراد حاصل می‌شود.


(به آلمانی: Martensite) بطور کلی به ساختارهای بلورینی گفته می‌شود که توسط استحاله مارتنزیتی به وجود بیایند. اما این اصطلاح بیشتر به فاز مارتنزیت در فولادهای سخت‌شده اطلاق می‌شود.

تصویر میکروسکوپ نوری بازتابیکوئنچ شده در روغن از مارتنزیت سوزنی در فولاد AISI 4140 آستنیته شده در ۸۵۰ درجه سانتیگراد

اگر اوستنیت به قدری سریع سرد شود که هیچ یک از استحاله‌های بر پایهٔ نفوذ در آن اتفاق نیافتد و فوق سرمایش تا حدی ادامه یابد که ساختار fcc پایدار نباشد، این ساختار بصورت برشی به bcc تبدیل می‌شود که از کربن فوق اشباع شده است. فاز حاصل را مارتنزیت می‌نامند.

ریشه لغوی

مارتنزیت از نام متالورژیست آلمانی آدولف مارتنز گرفته شده است.

منابع : کتاب آشنایی با متالورژی فیزیکی / سیدنی اونر

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 13:10 |
معرفي وكاربردها

سوپرآلياژها در واقع آلياژهايي مقاوم در برابر حرارت، خوردگي و اكسيداسيون ميباشند كه به لحاظ تركيب شيميايي شامل سه گروه پايه نيكل، نيكل-آهن و پايه كبالت ميباشند. اولين استفاده از سوپرآلياژها در ساخت توربينهاي گازي، طرحهاي تبديل ذغال‌سنگ، صنايع شيميايي و صنايعي كه نياز به مقاومت حرارتي و خوردگي داشتهاند بوده است.

امروزه تناژ وسيعي از قطعات مصرفي در توربينهاي گازي از جنس سوپرآلياژها ميباشند. در ذيل به بعضي از مصارف اين قطعات اشاره شده است:

- توربينهاي گازي هواپيما

- توربينهاي بخار نيروگاه‌هاي توليد برق

- ساخت قالب‌هاي ريختهگري و ابزارهاي گرمكار

- مصارف پزشكي و دندانپزشكي

- فضاپيماها

- تجهيزات عمليات حرارتي

- سيستمهاي نوتروني و هستهاي

- سيستمهاي شيميايي و پتروشيمي

- تجهيزات كنترل آلودگي

- تجهيزات و كورههاي نورد فلزات

- مبدلهاي حرارتي تبديل ذغال سنگ

به منظور انتخاب سوپرآلياژها جهت مصرف در كاربردهاي فوق لازم است خواص فني نظير شكلپذيري، استحكام، مقاومت خزشي، استحكام خستگي و پايداري سطحي در نظر گرفته شوند.

تقسيم‌بندي سوپرآلياژها برحسب روش توليد
با توجه به نحوة توليد ميتوان سوپرآلياژها را به چهار گروه كلي تقسيم‌بندي نمود كه عبارتنداز:

1) سوپرآلياژهاي كارپذير
سوپرآلياژهاي كارپذير در حقيقت گروهي از سوپر آلياژها هستند كه قابليت كار مكانيكي دارند و از روشهاي مكانيكي ميتوان به آنها شكلداد. به منظور توليد مقاطع معيني از سوپرآلياژهاي كارپذير، اولين گام آن است كه شمشهاي سوپرآلياژها به دليل حضور عناصر فعال(عناصري كه سريع در مجاورت هوا اكسيد ميشوند) در شرايط خاصي تهيه شوند. فرايندهاي ذوب در خلاء در مورد تهيه سوپرآلياژهاي پايه نيكل و پايه آهن جزء ضروريات مي­باشد. اما در مورد سوپرآلياژهاي پايه كبالت امكان ذوب در هوا وجود دارد. اين فرايند به طور خلاصه شامل ذوب القائي تحت خلاء (VIM)، ذوب مجدد قوس الكتريكي در خلاء (VAR) و ذوب مجدد با سرباره (ESR)، فرايندهاي ترمومكانيكي و متالورژي پودر ميباشند.
پس از تهيه شمش آلياژهاي كارپذير به يكي از روش‌هاي فوق عمليات شكلدهي صورت ميگيرد. عمليات شكل­دهي سوپرآلياژها نيز ميتواند توسط عمليات متداول كليه آلياژهاي فلزي انجام پذيرد. سوپرآلياژهاي پايه آهن، كبالت و نيكل را ميتوان به صورت مفتول، صفحه، ورق، نوار، سيم و اشكال ديگر توسط فرايندهاي نورد، اكستروژن و آهنگري توليد نمود. معمولاً عمليات شكلدهي در دماي بالا صورت ميگيرد و تعداد كمي از سوپرآلياژها را ميتوان به صورت سرد شكل‌دهي نمود. ساختارهاي يكنواخت و ريزدانهاي كه از شكل‌دهي سرد حاصل ميشود نسبت به ساختارهاي شكلدادن گرم ارجحيت دارند.
عمليات ترموديناميكي بر روي سوپرآلياژها معمولاً در حدود 1000-950 درجه سانتيگراد انجام ميشود كه به اين ترتيب در حين شكل دادن عمليات حرارتي نيز صورت ميگيرد.

2) سوپرآلياژهاي متالورژي پودر
بسياري از انواع آلياژهاي كارپذير از طريق فرايندهاي متالورژي پودر توليد ميگردند. امروزه قطعات متالورژي پودر از جنس سوپرآلياژ با دانسيته كامل از طريق روش‌هاي اكستروژن يا پرسكاري ايزواستاتيك گرم (HIP) توليد ميگردند. مهمترين اين قطعات قيچيها و سوزنهاي جراحي ميباشند.
فرايندهاي متالورژي پودر به‌دليل داشتن مزاياي زير بر فرايندهاي ريختهگري ترجيح داده ميشوند هر چند كه معايبي را نيز به همراه خواهند داشت:

- يكنواختي در تركيب شيميايي و ساختار كريستالي

- ريز بودن اندازه دانههاي كريستالي

- كاهش جدايشها

- راندمان بالاتر از نظر مصرف مواد

اما مشكلاتي نظير حضور گاز باقيمانده، آلودگي كربني و آخال‌هاي سراميكي باعث ميگردد كه در برخي موارد نيز فرايندهاي شمش‌ريزي و ترمومكانيكي متداول صورت پذيرند.

3) سوپرآلياژهاي پلي‌كريستال ريختگي
وجود محدوديت‌هاي تكنولوژيكي سبب محدود شدن رشد صنعت سوپرآلياژ مي‌گردد و بنابراين با پيدايش فرايندهاي جديد توليد، اين صنعت نيز روز به روز توسعه مييابد.
تعداد زيادي از فرايندها را ميتوان در توليد قطعات سوپرآلياژ با اندازه نزديك به قطعة نهايي مورد استفاده قرار داد اما اساساً اين قطعات توسط فرايند ريختهگري دقيق توليد ميگردند.
محدوده تركيب شيميايي سوپرآلياژهاي ريختگي بسيار گستردهتر از سوپرآلياژهاي كارپذير بوده و بنابراين خواص متنوعتري نيز از اين طريق قابل حصول خواهند بود هر چند كه انعطاف‌پذيري و مقاومت به خستگي در فرآيندهاي كار مكانيكي بهتر از ريختهگري خواهد بود، اما امروزه با توسعه فرآيندهاي جديد ريختهگري و انجام عمليات حرارتي متعاقب، خواص سوپرآلياژهاي ريختگي نيز افزايش يافته است.

4) سوپرآلياژهاي تك كريستالي انجماد جهتدار
به‌منظور توسعه توربينهاي گازي مصرفي در هواپيماها و افزايش دماهاي كاري و كارآيي موتورها، به‌طور مداوم روشهاي توليد سوپرآلياژها در حال بهبود است.
قسمت‌هاي بحراني توربينها معمولاً شامل پرههاي تحت فشار بالا، هواكشها و ديسكها ميباشند. در طول 15 سال گذشته تحقيقات بسياري در زمينه افزايش راندمان توربينها صورت گرفته است و عمده اين تحقيقات بر امكان افزايش دماي ورودي، فشاركاري و كاهش هزينههاي توليد استوار بوده است. توسعه فرايند انجماد جهتدار به‌منظور توليد تك‌كريستالي‌هاي ريختگي سبب شده تا بتوان از اين طريق پرههاي توربين را با دانههاي جهتدار در راستاي اعمال تنش توليد نمود و به اين ترتيب علاوه بر خواص پايدار حرارتي، استحكام خستگي، استحكام خزشي و انعطاف‌پذيري نيز افزايش يابند.
با توسعه اين تكنولوژي، امروزه در توربينهاي مصرفي در نيروگاه‌هاي برق نيز از قطعات تك‌كريستال از جنس سوپرآلياژها استفاده به‌عمل ميآيد.
در سالهاي اخير شركت هواپيمايي PWA يكي از پيشگامان توليد سوپرآلياژها مي‌باشد و توليد آلياژهاي PWA 1480 به صورت تك‌كريستال توسط اين شركت، سبب افزايش عمركاري هواپيماي جنگي F-100 گرديده است.
تقسيم‌بندي سوپرآلياژها برحسب تركيب شيميايي
به طور كلي اين آلياژها شامل سه گروه پايه نيكل، پايه آهن و پايه كبالت ميباشند كه بسته به درجه حرارت كاربردي مورد استفاده قرار ميگيرند

1) سوپرآلياژهاي پايه نيكل
امروزه آلياژهاي نيكل در حالت‌هاي "تك‌فازي"، "رسوب سختي شده" و "مستحكم‌شده توسط رسوبات اسيدي و كامپوزيتها" در مصارف صنعتي مختلف مورد استفاده قرار ميگيرند.
سوپرآلياژهاي پايه نيكل پيچيدهترين تركيباتي ميباشند كه در قطعات دماي بالا به كار ميروند. در حال حاضر 50 درصد وزن موتورهاي هواپيماهاي پيشرفته از جنس اين آلياژها ميباشد. خصوصيات اصلي آلياژهاي نيكل، پايداري حرارتي و قابليت مستحكم شدن ميباشد.
بسياري از اين آلياژها حاوي 10 الي 20 درصد كرم، حداكثر 8 درصد آلومينيوم و تيتانيم، 5 تا 15 درصد كبالت و مقادير كمي موليبدن، نيوبيم و تنگستن ميباشند.
دو گروه اصلي از آلياژهاي آهن- نيكل كه ميزان نيكل آنها بيشتر از مقدار آهن است عبارت از گروهIncoloy 706 و Inconel 718 ميباشند.
اين آلياژها معمولاً حاوي 3 تا 5 درصد نيوبيم ميباشند و در رديف آلياژهاي پايه نيكل قرار ميگيرند. آلياژهاي پايه نيكل معمولاً تا دماي 650 درجه سانتيگراد استحكام خود را حفظ ميكنند. اما در دماهاي بالاتر به سرعت استحكام خود را از دست ميدهند.

2) سوپرآلياژهاي پايه آهن
سوپرآلياژهاي پايه آهن نشات گرفته از فولادهاي زنگ نزن آستينتي ميباشند كه داراي زمينهاي از محلول جامد آهن و نيكل بوده و براي پايداري زمينه نياز به حداقل 25 درصد نيكل است.
- گروه‌هاي متعددي از اين آلياژها تاكنون مشخص گرديدهاند كه هر يك با مكانيزمهاي خاصي مستحكم ميشوند. برخي از اين آلياژها نظير 57-V و 286-A حاوي 25 تا 35 درصد وزني نيكل ميباشند و استحكامشان به دليل حضور آلومينيوم و تيتانيم مي‌باشد.
- گروه دوم آلياژهاي پايه آهن كه آلياژهايX750 و Incoloy901 نمونههاي آن ميباشند، حداقل 40 درصد وزني نيكل داشته و همانند گروههاي با نيكل بالاتر استحكام بخشي توسط سختي رسوبي صورت ميگيرد.
- گروه ديگر اين آلياژها بر پايه آهن- نيكل- كبالت ميباشند و استحكام اين گروه در محدوده 650 درجه سانتيگراد مناسب بوده و ضريب انبساط حرارتي آنها پايين ميباشد. اين آلياژها شامل Incoloy با شمارههاي 903، 907، 909، 1-1- PyrometCTX و 3-PyrometCTX و غيره ميباشند.

3) سوپرآلياژهاي پايه كبالت
سوپرآلياژهاي كارپذير پايه كبالت برخلاف ساير سوپرآلياژها مكانيزم استحكام بخشي متقاوتي دارند و خواص حرارتي خوبي در دماي حدود 1000 درجه سانتيگراد خواهند داشت.
سوپرآلياژهاي پايه كبالت حاوي كرم، مقاومت به خوردگي و اكسيداسيون خوبي داشته و هم چنين قابليت جوشكاري و مقاومت به خستگي حرارتي آنها نسبت به آلياژهاي پايه نيكل بالاتر ميباشد. از طرف ديگر امكان ذوب و ريختهگري اين آلياژ، در هوا با اتمسفر آرگون مزيت ديگري نسبت به ساير سوپرآلياژها كه نياز به خلاء دارند مي­باشد.

سه گروه اصلي آلياژهاي پايه كبالت را ميتوان به صورت ذيل در نظر گرفت:

- آلياژهايي كه در دماهاي بالا در محدودة 650 تا 1150 درجه سانتيگراد مورد استفاده قرار ميگيرند كه شامل آلياژهايS-816، 25HAYNES، 188 25HAYNES، 55625HAYNES، 50UMCO ميباشند.

- آلياژهايي كه تا حدود 650 درجه سانتيگراد به كار ميروند نظيرTN3MP، 159 MP

- آلياژ مقاوم به سايش B 6Stellite

آلياژ 2525HAYNES بيشترين كاربرد را در ميان آلياژهاي كارپذير پايه كبالت داشته اشت و در ساخت قطعات گرمكار نظير توربينهاي گازي، اجزاء راكتورهاي هستهاي، ايمپلنت‌هاي جراحي و غيره مورد استفاده قرار گرفتهاند. آلياژهاي گروه پايه كبالت كه شامل كرم- تنگستن- كربن ميباشند معروف به آلياژهاي Satellite بوده كه به شدت مقاوم به سايش ميباشند.
اين گروه معمولاً در مواردي كه مقاومت سايشي در درجه حرارت‌هاي بالا مورد نياز باشد به كار ميروند. در واقع سختي اين مواد در دماي بالا حفظ شده و در مواقعي كه نميتوان در حين كار روغنكاري انجام داد به خوبي مورد استفاده قرار ميگيرند.
بازار سوپرآلياژها
شايد بتوان گسترش بازار سوپرآلياژها را در دنيا مربوط به صنايع هوا _ فضا در نظر گرفت كه با توجه به رشد روزافزون اين صنعت و قطعات يدكي آن در سطح جهان پيش بيني ميگردد كه تنها بازار قطعات يدكي هواپيماها بالغ بر 4،5 ميليارد دلار باشد، بررسيها حاكي از آنست كه تا سال 2015 تعداد 16000 فروند هواپيماي جديد با موتورهاي توربين گازي وارد بازار ميشوند كه نيمي از وزن اين موتورها از جنس سوپر آلياژ خواهد بود.
بر اساس آمارهاي تخميني موجود در ايران، سوپرآلياژها سالانه به ميزان 80 ميليون دلار در سه وزارتخانة نفت، نيرو و دفاع مورد استفاده قرار ميگيرند.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 13:8 |
به علت تنش هاي داخلي ايجاد شده در ضمن سريع سرد شدن ، تقريبا تمامي قطعات سخت شده نسبتا ترد و شكننده اند . از اين رو به ندرت فولاد ها پس از سريع سرد شدن و در شرايط سخت (مارتنزيت ) شده استفاده مي شوند ، مگر در موارد استثنايي نظير هنگامي كه به سختي فوق العاده زيادي نياز با شد و يا در رابطه با فولاد هاي كم كربن . معمولا فولاد پس از سرد شدن و قبل از استفاده بايد بازگشت شود. بازگشت عبارت است از حرارت دادن فولاد سخت شده تا دمايي زير دماي Ae1 ، نگه داشتن براي مدت زمان مشخص و سپس سرد كردن آهسته تا دماي اتاق . دما و زمان حرارت دادن به تركيب شيميايي فولاد ، ابعاد قطعه و خواص مكانيكي مورد نظر بستگي دارد . در اثر باز پخت تنش هاي داخلي كاهش يافته و يا حذف مي شوند و بنابراين استحكام ضربه اي افزايش مي يابد (شكنندگي كم مي شود) . در عوض سختي و استحکام قطعه سخت شده تا حدودي كاهش خواهد يافت .

تغييرات ميكرو ساختار
ساختار يك فولاد سريع سرد (مارتنزيت) شده ، ناپايدار است . دلايل ناپايداري عبارتند از :
وجود كربن به صورت فوق اشباع در شبكه بلوري مارتنزيت ، انرژي تنشي ناشي از وجود نابجايي ها و دوقلو هاي بسيار زياد در ساختار بلوري صفحات مارتنزيتي ، انرژي سطحي ناشي از فصل مشترك هاي بسيار زياد بين صفحات مارتنزيتي و بالاخره وجود آستنيت باقيمانده كه حتي در فولاد هاي كم كربن نيز اجتناب ناپذیر است . هنگامي كه يك فولاد مارتنزيت شده به منظور بازگشت دادن حرارت داده مي شود ، هر كدام از پارامتر هاي فوق نقش نيروي محركه اي را براي تغيير ساختار در مراحل مختلف بازي مي كند ، كه عبارتند از : كربن فوق اشباع در شبكه مارتنزيت نيروي محركه جهت تشكيل كاربيد .
انرژي تنشي نيروي محركه براي بازيابي .انرژي فصل مشترك نيروي محركه براي رشد دانه ها و يا افزايش پيوستگي و وسعت زمينه فريتي و بالاخره آستنيت باقيمانده نيروي محركه براي تشكيل مخلوط فريت و سمنتيت در ضمن بازگشت .
بررسيهاي سيستماتيك كه به كمك پراش پرتو ايكس برروي ميكروساختار فولاد هاي سريع سرد و بازگشت شده انجام شده است ، سه مرحله كاملا مشخص و مجزا از يكديگر را در رابطه با تغيير ميكروساختار مارتنزيت در ضمن بازگشت نشان مي دهد . اين سه مرحله عبارتند از :
مرحله اول : تشكيل كاربيد هاي انتقالي نظير كاربيد اپسيلن و يا كاربيد اتا و در نتيجه كاهش درصد كربن زمينه مارتنزيتي تا حدود 25/0 درصد .
مرحله دوم : تبديل آستنيت باقيمانده به فريت و سمنتيت .
مرحله سوم : جايگزين شدن كاربيد هاي انتقالي ومارتنزيت كم كربن توسط فريت و سمنتيت .

در اين جا تذكر اين نكته ضروري است كه به جز موارد اشاره شده در مراحل سه گانه فوق تغييرات ساختاري ديگري نيز در ضمن بازگشت فولاد هاي سريع سرد شده گزارش شده است .از آن جمله تشكيل كاربيد هاي آلياژي و ايجاد سختي ثانويه است ، كه مي توان آن را مرحله چهارم بازگشت ناميد .مطالعات و گزارشات ديگري در همين رابطه نشان است كه در ضمن سريع سرد شده يا نگه داشتن فولاد سريع سرد شده در دماي اتاق احتمال رسوب اتمهاي كربن بر روي نابجاييها و محل هاي پر انرژي ديگر نظير فصل مشترك هاي بين صفحات مارتنزيتي وجود دارد . تحت شرايط فوق رسوب و تجمع اتمهاي كربن مي تواند تشكيل كاربيد را به دنبال داشته باشد . در حقيقت در چنين شرايطي مرحله اول بازگشت در ضمن سريع سرد شدن يا نگه داشتن در دماي اتاق انجام مي شود . به اين ترتيب ملاحظه مي شود كه تغييرات ساختار يك فولاد سريع سرد شده را در ضمن بازگشت به بيشتر از سه مرحله مي توان تقسيم كرد . با اين حال نظر به اهميت موضوع و سهولت مطالعه رفتار فولاد هاي بازگشت شده ، ‌‌‌‌اثرات باز گشت بر روي تغييرات ميكرو ساختار در چهارچوب مراحل اول ، دوم و سوم بررسي مي شود .

تغييرات خواص مكانيكي
مارتنزيت كه ميكرو ساختار مورد نظر در عمليات سريع سرد كردن سريع فولاد هاست ، كاملا سخت ودر عين حال بسيار ترد و شكننده است . برخي پارامتر ها كه منجر به ترد و شكننده شدن مارتنزيت مي شوند عبارت اند از :
- خارج شدن شبكه بلوري فولاد از شكل طبيعي خود در اثر محبوس شدن كربن اضافي در فضاي هشت وجهي .
- رسوب اتم هاي ناخالصي در مرز دانه آستنيت اوليه .
- تشكيل كاربيد در ضمن سرد شدن .
- تنش هاي حاصل از سريع سرد شدن .
هدف اصلي از عمليات حرارتي بازگشت كاهش تردي و شكنندگي و يا به بيان ديگر افزايش چقرمگي و مقاومت فولاد در برابر ضربه است . از آن جايي كه در عمليات باز گشت هر دمايي در گستره دماي اتاق تا دماي Ae1 را مي توان استفاده كرد ، بنا براين ميكرو ساختار و در نتيجه خواص مكانيكي كاملا متنوعي از مارتنزيت تا سمنتيت كروي در زمينه فريت را مي توان بدست آورد . عملا دما و زمان بازگشت با توجه به خواص مكانيكي يعني ميزان سختي ، استحكام و چقرمگي كه در عمل لارم است انتخاب مي شود .
دماي مناسب براي بازگشت فولاد هاي كربني ساده و كم آلياژ را مي توان با توجه به تركيب شيميايي آن ها و سختي نهايي مورد نظر به طور تقريب مشخص كرد . اين روش بر اساس فرمول ارائه شده توسط گرون وجف است كه فرض مي كند فولاد پس از سريع سرد شدن عمدتاًساخاتر مارتنزيتي داشته باشد . فرمول ارائه شده به صورت زير است :

( T = 30 ( Hc – Ha
در اين فرمول :
T : دماي بازگشت بر حسب فارنهايت ،
Hc : سختي محاسبه شده از تركيب شيميايي ،
Ha : سختي مورد نظر پس از بازگشت است .
اگر دماي باز گشت به سانتيگراد تبديل شود فرمول فوق به صورت زير در مي آيد :
T = 16.67 ( Hc – Ha ) – 17.8
ارتباط دما وزمان بازگشت
در عمليات بازگشت هنگامي كه به زمان باز گشت اشاره اي نشود منظور زمان يك ساعت است . براي حصول سختي مورد نظر مي توان زمان بازگشت را تغيير داد . به شرط اينكه دماي بازگشت تغيير داده شود . رابطه دما وزمان بازگشت توسط پارامتر بازگشت مشخص مي شود { T(C+log t ) } در اين رابطه T دماي بازگشت بر حسب درجه كلوين و t زمان بازگشت بر حسب ساعت و C ثابت بازپخت است . لازم به اشاره است كه C تابع درصد كربن فولاد بوده و عناصر آلياژي بر روي آن اثر قابل ملاحظه اي ندارند . مقدار C را تقريباً برابر با 18 پيشنهاد داده اند .

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 13:5 |
خوردگی دو فلزی :
چون آلومینیوم یک فلز پست است خطر خوردگی دو فلزی در تماس مستقیم آن با یک فلز نجیب تر مثل فولاد وجود دارد . ولی شرط وقوع حمله٬ حضور یک الکترولیت در نقطه تماس است . لذا خوردگی دو فلزی در فضای بسته خشک به وجود نمی آید و خطر حمله خوردگی دو فلزی در اتمسفر باز وجود دارد . البته این نوع خوردگی روی سطحی که با دوده آلوده شده باشد هم پیش می آید .

خوردگی شکافی:
نوعی خوردگی شکافی در آلومینیوم در حضور آب پیش می آید نتیجه این خوردگی شکافی می تواند تشکیل اکسید آلومینیوم باشد که به صورت لکه های آب سبب بی رنگ شدن سطح می شود . زدودن لکه هاب آب دشوارو احتمالا غیر ممکن است .

خوردگی لایه ای :
خوردگی لایه ای که به خوردگی پوسته شدن هم معروف است بیشتر به موادی که غلتک می خورند یا روزن ران می شوند ازنوع AlCuMg و AlZnMg محدود می شود . مکان حمله د رلایه های موازی نازک در جهت حرکت به جلو بوده است و سبب می شود که رویه های فلزی که مورد حمله قرار گرفته اند از هم جدا شده و یا تاول هایی بر سطح فلز ایجاد شود . خوردگی لایه ای با قرار گرفتن فلز در آب راکد و یا اتمسفر در یایی هم به وجود می آید و مقاومت در برابر خوردگی لایه ای هم از روی عملیات پیر سازی تعیین می شود .
یكی دیگر ازخواص مشخصه آلیاژهای آلومینیوم مقاومت در مقابل خوردگی است. آلومینیوم خالص وقتی كهدر هوا قرار گیرد بلافاصله با یك لایه چسبنده اكسید آلومینیومی پوشیده می‌شود، اینلایه پوششی، مانع خوردگی می‌گردد. اگر در اثر سائیدگی این لایه كنده شود بلافاصلهدوباره تشكیل می‌گردد. ضخامت این لایه نازك طبیعی در حدود 025/0 میكرون (یك میكرون = یك هزارم میلی‌متر) است، با این وجود بقدری محكم است كه مانع موثری در مقابل اغلبمواد خورنده محسوب می‌گردد.
البته برخی از آلیاژهای خاص آلومینیوم نسبت بهدیگران مقاومتر است. برای مثال گروه آلیاژهای Al-mg مخصوصاً در مقابل هوا و آب دریامقاوم است. از طرف دیگر آلیاژهای آلومینیوم حاوی مس یا روی از نظر مقاومت خوردگیضعیف‌تر و از نظر استحكام مكانیكی قویتر می‌باشد.روش های زیر در جلوگیری از خوردگی به کار می رود :

حفاظت کاتد ی:
مصالح آلومینیوم غوطه ور در آب را می توان به روش حفاظت کاتدی در مقابل تشکیل حفره حفظ کرد. برای این کار پتانسیل الکترودی را تا مقدار زیر پتانسیل تشکیل حفره جسم در محیط مورد نظر پایین می آورند٬ با وجود این گاز هیدروژن می تواند در کاتد تشکیل شود که نتیجه آن بالا رفتن مقدار PH است . هرگاه PH بسیار بالا رود آلومینیوم احتمالا مورد حمله قرار می گیرد لذا از حفاظت اضافی آن باید اجتناب کرد .

آندی کردن:
لایه اکسید تشکیل شده در سطح آلومینیوم در معرض هوا از خصلت حفاظتی خوبی برخوردار است اما این لایه اکسید را می توان با برقکافت ضخیم تر کرد . این کار را آندی کردن می گویند و اکسیدی که به این ترتیب تشکیل می شود اندود اکسید آندی نامیده می شود . با آندی کردن فلز مقاومت در برابر خوردگی افزایش می یابد ضمن اینکه سطح با قرار گرفتن در فضای باز ظاهر جدیدی پیدا خواهد کرد . در موقع آندی کردن آلومینیوم شی فلزی اند پیل الکترولیتی را تشکیل می دهد . اندود اکسید آندی که طی برقکافت ایجاد می شود شامل یک لایه فشرده به صورت سد در نزدیک سطح فلز و لایه دیگری با منافذ ریز بر روی آن است .

رنگ کاری :
مصالح آلومینیومی را برای فضای باز مثل ساختمان ها نیاز به رنگ مقاوم به خوردگی ندارند . خوردگی اتمسفری ان قدر شدید نیست که بر مقاومت ساختمان اثر گذارد . در هر حال رنگ کردن آلومینیوم بیشتر به منظور زیبا سازی انجام می شود.
اگر مقاومت طبیعی آلومینیومبرای بعضی از محیط‌ها كافی نباشد در آن صورت روش هایی وجود دارد كه بتوان مقاومت آنرا افزایش داد. برخی از این روشها عبارتند از: پوشش دادن با آلومینیم ٬ آندایزه کردن یا آبکاری ٬ پوشش سخت دادن ومحافظت کاتدی .

پوشش آلومینیومی دادن Alcladding:
بطور كلی آلیاژهای آلومینیوم با استحكام زیاد از نظر خوردگی كم مقاومترین آنها محسوب می‌گردند. این مطلب بخصوص در مورد آلیاژهای حاوی درصدهای زیاد مس یا روی صادق است. از طرف دیگر مقاومت به خوردگی آلومینیوم خالص بسیار زیاد است. پوشش آلومینیومی دادن یكی از روش های افزایش مقاومت خوردگی به یك آلیاژ با استحكام زیاد است. در این فرآیند یك لایه آلومینیوم خالص به سطح آلیاژ مورد نظر متصل شده و در نتیجه در مجموعه خواص مورد نظر حاصل می‌شود. این روش مخصوصاً در محصولات ورقه‌ای مناسب است.

آندایزه كردن (آبكاری) Anodizing:
در این روش از مقاومت زیاد در مقابل خوردگی لایه پوششی كه بلافاصله بر روی سطح آلومینیوم تازه بریده شده تشكیل می‌گردد استفاده می‌شود. همانگونه كه قبلاً ذكر گردید این لایه عامل مقاومت به خوردگی طبیعی این فلز است. آندایزه كردن در واقع یك نوع ضخیم كردن لایه اكسیدی به ضخامت تا چندین هزار برابر ضخامت لایه اكسید طبیعی است. نتیجه عمل، لایه‌ای است سخت با ضخامت حدود 5/25 میكرون بر تمام سطح آلومینیوم كه علاوه بر مقاومت به خوردگی در مقابل سایش نیز استحكام كافی دارد. آندایزه كردن یك روش الكتریكی است كه انواع مختلف آن اساساً از نظر محلولی كه فلز در آن مورد عمل قرار می‌گیرد و ضخامت لایه اكسیدی حاصل، فرق می‌نماید. از این طریق پوشش دادن علاوه بر حفاظت سطحی گاهی به منظور تزئینی نیز استفاده می‌گردد اگر فلز آندایزه شده را با انواع رنگهای مختلف پوشش دهند رنگ حاصل تقریباً بصورت قسمتی از اكسید سطحی بدست می‌آید.

تاول زدن سطح قطعات آلومینیمی در هنگام عملیات حرارتی :
عواقب نفوذ هیدروژن بداخل مذاب از طریق واکنش سطحی مذاب با بخار آب در ریخته گری کاملا مشخص است. یک چنین واکنشی ممکن است در خلال عملیات حرارتی انحلال نیز با آلومینیوم جامد انجام گیرد که منجر به جذب اتم های هیدروژن شود. این اتم ها می توانند در حفره های داخلی با هم ترکیب شده و تشکیل مجموعه های گاز ملکولی دهند. در اثر حرارت دادن ماده فشار گازی موضعی ایجاد می شود و با توجه به اینکه در این دماهای بالا فلز دارای پلاستیسیته نسبتا زیادی است این امر منجر به تشکیل تاولهای غیر قابل جبران سطحی می گردد.
تاولهای ایجاد شده بر سطح قطعات آلیاژ آلومینیومی عملیات حرارتی شده در محیط مرطوب حفره های داخلی که این تاولها در آنجا ایجاد می شوند از تخلخل های اولیه شمش که از بین نرفته اند ترکیبات بین فلزی که در خلال تغییر شکل ترک خورده اند و احتمالا خوشه های مکانهای خالی اتمی در شبکه که ممکن است در اثر حل شدن رسوبات یا ترکیبات حاصل شده باشند ناشی می شوند. در این گونه موارد وجود تاولی که باعث خرابی ظاهر سطحی قطعه می گردد ممکن است تاثیر برروی خواص مکانیکی قطعات بگذارد. در هر حال بیش از حد گرم کردن قطعه منجر به تاول زدن می گردد زیرا هیدروژن به آسانی می تواند توسط مناطق ذوب شده جذب گردد که در این صورت مساله جدی تر می شود و باعث مردود شدن قطعه کار می گردد.
از آنجائی که حذف کامل حفره های داخلی در محصولات کار شده مشکل است ٬ لازم است مقدار بخار آب موجود در محیط کوره را به حداقل رسانید.اگر این امر امکان پذیر نباشد در آن صورت ورود یک نمک فلورایدی بداخل کوره در خلال عملیات حرارتی قطعات حساس می تواند از طریق کاهش واکنش سطحی قطعه با بخار آب مفید واقع شود.
منابع :
1) مبانی تکنولوژی خوردگی / اینار ماتسون / ترجمه عسگر هورفر
2) خوردگی فلزات و جلوگیری از آن / مهندس محمد تقی علیزاده طوسی
3) اینترنت

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 13:2 |
شاید بارها نام فازهای مختلف دیاگرام آهن- کربن را شنیده اید و دوست داشته ایدبدانید منشا این نامها چیست. در ادامه مطلب در این مورد بحث شده است.

سمانتیت (Cementite): حدس زدن این مورد شاید آسان باشد. این لغت برگرفته از کلمه Cement در زبان انگلیسی به معنای ماده ای است که مواد مختلف را به هم می چسباند، می باشد.

در سال 1855 Osmond و Werth تئوری سلولی را ارائه دادند که در آن نه تنها وجود گونه های آلوتروپیک آهن( که امروزه به نام آستنیت و فریت معروف هستند) را پیشنهاد دادند، بلکه در این تئوری نگاه تازه ای به تشکیل کاربید ها شده بود. تحقیقات آنها در خصوص فولادهای پرکربن نشان داد که مخلوطی شامل سلولهای و دانه های آهن وجود دارد که توسط لایه ای از کاربید آهن محصور شده است.در حین انجماد ابتدا گلبولها یا سلولهای آهن تشکیل شده و رشد می کنند و باقیمانده مذاب به صورت کاربید آهن منجمد می شود. بدین ترتیب کاربید تشکیل شده با قرار گرفتن در اطراف سلولهای قبلی شکل گرفته، آنها را به هم می چسباند. از این شرح می توان دریافت چرا Osmond کاربید تشکیل شده را از لغت فرانسوی Ciment نامگذاری کرد.

این فاز در زبان آلمانی با Zementit و در انگلیسی با Cementite نشان داده می شود.

فریت (Ferrite): Ferrum ریشه لاتین برای بیشتر لغات جدید ساخته شده در خصوص آهن و ترکیبات آن می باشد که احتمالا ریشه سامی دارد.

آستنیت (Austenite): این فاز به یادبود Sir William Chandler Roberts-Austen متالورژیست انگلیسی تبار(1843-1902) نامگذاری شده است.

Robert-Austen اولین کسی بود که دیاگرام اولیه آهن – کربن را در سال 1897 (شکل زیر) و فرم نهایی آن را در سال 1899 منتشر کرد.
او همچنین اولین دانشمندی است که اندازه گیری کمی (Quantitative ) نفوذ در حالت جامد (طلا در مس ) را با توجه به قوانین نفوذ فیک انجام داد.

پرلیت(Pearlite): برگرفته از ظاهر درخشنده مروارید شکل (Pearl) و رنگین کمانی این فاز می باشد.علت اینکه ساختار این فاز به صورت مروارید این است که تیغه های تشکیل شده با داشتن خاصیت انعکاس نور متفاوت به علت جهت گیری مختلف، تشکیل کریستال های متفاوت نوری می دهند.

لدبوریت (Ledeburite): نامگذاری شده به افتخار Adolf Ledebur (1837- 1916).

Ledebur اولین پروفسوری بود که در سال 1882 مخلوط کریستالی آهن کربن را کشف نمود.

مارتنزیت (Martensite): به افتخار Adolf Martens(1850-1914) نامگذاری شده است.

وی کارش را در آزمایشگاه مکانیکی رویال در برلین به عنوان مهندس شروع نمود. امروزه یک جایزه مشهور به نام او اهدا می شود.

بینیت (bainite): این فاز به یادبود E.C. Bain شیمیدان آمریکایی نامگذاری شده است.

تاریخچه آستمپرینگ به سال 1930 بر می گردد، زمانی که Grossman و Bain در آزمایشگاه های فولاد ایالات متحده بر روی ارزیابی پاسخ متالورژیکی فولادهای سرد شده با سرعت زیاد از دمای 1450 درجه فارنهایت (788 درجه سانتیگراد) به دماهای متناوبا بالا و نگهداری در این دماها به مدت زمانهای مختلف های در حال کار بودند.

نتیجه تحقیقات آنها چیزی است که ما امروزه به عنوان دیاگرامهای استحاله همدما (Isothermal Transformation Diagram) می شناسیم.

Grossman و Bain با ساختارهای معمول متالورژیکی فریت، پرلیت و مارتنزیت آشنا بودند. چیزی که آنها کشف کردند ساختار دیگری بود که در بالاتر از دمای آغاز تشکیل مارتنزیت (Ms) و پایین تر از دمای تشکیل پرلیت بود.

در فولادها این ساختار شکل ساختارهای سوزنی (بشقابی) با ظاهری پر مانند را داراست. تحقیقات X ray نشان داد که بینیت شامل فریت و کاربید فلزی است.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 13:0 |
-1-مقدمه(تعریف خوردگی)
خوردگی راتخریب یا فاسد شدن یک ماده در اثر واکنش با محیطی که در آن قرار دارد تعریف می کنند. این فرایند می تواند سریع یا کند صورت گیرد.
خوردگی یکی از مشکلات عمده در صنایع نفت و گاز به شمار می آید که سالانه مبالغ هنگفتی، به خود اختصاص می دهد. وقفه در تولید، زیان هنگفتی چه از نظر تولید هیدروکربن و چه از نظر هزینه تعمیرات در پی خواهد داشت. بنابراین سلامت تجهیزات در طول عمر مفید آن ها یک مسأله اساسی به نظر می رسد. کاربرد مواد مقاوم در برابر خوردگی باعث صرفه جويی های عمده ای در بعضی کار خانه جات و تأسیسات می شود. نظارت دائمی بر فرایند خوردگی و محیط های خورنده، قبل از ساخت تأسیسات، باعث حذف یا کاهش عمده ی مخارج تعمیرات و نگهداری می شود و در جلو گیری از انهدام های غیر منتظره و خواباندن تأسیات نقش به سزايی دارد.
-2-محیط های خورنده و عوامل مؤثر بر خورندگی
عملاً کلیه ی محیط هاخورنده هستند، لکن قدرت خورندگی آنها متفاوت است. به طور مثال خوردگی در صنایع نفت بیشتر در اثر کلر و سدیم ،گوگرد ،اسید سولفوریک، کلریدیک و آب است تا به دليل روغن، نفت و بنزین. درجه حرارت ها و فشارهای بالاتر معمولاً باعث ایجاد شرایط خوردگی شدید تری می گردند. گاهی اوقات تغییرات جزيی در پروسه یا افزودن یک ماده ی جدید می تواند مسئله ی خوردگی را کاملاً دگرگون سازد. غالباً در صنایع فرایندی، مواقعی پیش می آید که لازم است بعضی متغیر ها و فاکتورهای سیستم را تغییر داد؛ بنا بر این، در اینجا علم بر عوامل موثر بر خوردگی ضروری می نماید.

1-2-1-اثر اکسیژن و اکسید کننده ها
درک اثر اکسیژن و اکسید کننده ها نیازمند آشنایی با پدیده ی "غیر فعال شدن" میباشد که در ذیل شرح داده می شود.
می توان گفت غیر فعال شدن، از بین رفتن میل ترکیب شیمیائی است که در مورد بعضی فلزات و آلیاژ ها تحت شرایط معینی به وجود می آید. بدین معنی که بعضی فلزات و آلیاژها تقریبا˝ نجیب و خنثی شده و طوری رفتار می کنند که گویی فلزات نجیبی مثل پلاتین و طلا هستند. خوشبختانه مستعد ترین فلزات از این نظر فلزات معمولی ساختمانی معمولی و مهندسی، مثل آهن، نیکل، سیلیسیم، کرم، و تیتانیم و آلیاژ های شامل این فلزات می باشد. در این فلزات ابتدا، با افزایش قدرت اکسید کننده گی محلول، صورت مداوم افزایش یافته تا اینکه با رسیدن به ناحیه ی غیر فعال فلز، سرعت خوردگی به صورت ناگهانی کم می شود. افزایش بیشتر عامل اکسید کننده (در صورتی که اثر داشته باشد) تأثیر بسیار کمی بر سرعت خوردگی فلز مورد نظر خواهد داشت. بالأ خره در غلظت های خیلی بالا ماده ی اکسید کننده یا در حضور اکسید کننده های خیلی قوی، سرعت خوردگی دوباره افزایش یافته و این ناحیه را ناحیه ی ترانس پسیو می نامند.معمولا˝ سرعت خوردگی در انتقال از حالت فعال به حالت غیر فعال ،103 تا 108 برابر کم می شود.شایان ذکر است که علت دقیق این پدیده کاملا˝ مشخص نیست.

1-2-2-اثرات سرعت حرکت
اثرات سرعت حرکت بر خوردگی، مانند افزایش قدرت اکسید کنندگی، پیجیده است و به خصوصیات فلز و محیط آن بستگی دارد. در واکنش های خوردگی که به وسیله ی پولاریزاسیون اکتیواسیون کنترل می شوند، سرعت یا تلاطم بر سرعت خوردگی بی اثر است و اگر فرایند خوردگی تحت پولاریزاسیون غلظتی کاتدی قرار داشته باشد، در اینصورت بهم خوردن یا تلاطم محلول سرعت خوردگی را افزایش می دهد.این اثر معمولا هنگامی روی میدهد که یک عامل اکسید کننده در مقادیر خیلی کم وجود دارد. آلیاژها یا فلزاتی که به سهولت غیر فعال می شوند مثل فولاد زنگ نزن(Stainless Steel)و تیتانیم، در مواقعی که سرعت محیط خورنده بالاست مقاومت بیشتری در مقابل خورده شدن دارند.
بعضی فلزات مقاومت در مقابل خوردگی در بعضی محیط ها را مدیون پوسته های محافظ و ضخیمی هستند که روی سطح آنها تشکیل می شود.این پوسته ها از لایه های نازک غیر فعال کننده متمایز هستند زیرا به سهولت قابل رویت بوده و دارای چسبندگی کمتری به سطح فلز نسبت به پوسته های غیر فعالمی باشند. عقیده بر آن است که سرب و فولاد بوسیله ی پوسته های نامحول سولفات از خورندگی اسید سولفوریک در امان می مانند.اینگونه فلزات چنانچه در معرض محیط خورنده با سرعت حرکت بسیار بالاتر قرار بگیرند، خسارات مکانیک یا کنده شدن این پوسته ها می تواند اتفاق بیافتد و منجر به خوردگی سریع و ناگهانی بشود.این نوع خوردگی را خوردگی را خوردگی سایشی می نامند که در بخش ها ی بعد در باره ی آن بحث خواهد شد.

1-2-3-اثر درجه ی حرارت
درجه ی حرارت باعث افزایش سرعت اکثر واکنشها ی شیمیائی می شود.یعنی با بالا رفتن درجه حرارت سرعت خوردگی خیلی سریع و یا نمایی افزایش می یابد.
رفتار دیگری نیز متداول است به این صورت که افزایش درجه حرارت ابتدا اثر بسیار کمی بر سرعت خوردگی داشته و در درجه حرارت های بالاتر به طور ناگهانی افزایش می یابد.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 12:57 |
سخت كردن
سخت كردن جوش و فولاد عبارت از گرم كردن قطعه به اندازه  50 تا °F 100  در بالاي محدوده بحراني فولاد و سرد كردن بعدي ان با سرعتي بيش از سرعت بحراني  مي باشد. اين كار بنابر قابليت سختي پذيري فولاد  مورد نظر ممكن است به صورت كوئينچ  كردن در آب،  روغن يا هوا انجام شود. در دماي بالاي بحراني، ساختار قطعه به آستنيت تبديل مي شود. هنگام سرد كردن با سرعت بيش از سرعت بحراني، ساختار آستنيت به مارتنيزيت كه سخت ترين نوع ساختار است تبديل مي گردد سخت شدن مكرراً در ناحيه گرما ديده جوش ها اتفاق مي افتد كه معممولاً يك وضعيت نامطلوب تلقي مي شود . با اين حال، از اين فرايند در اماده سازي ابزار برش و شكل دهنده ها به منظور سخت كردن سطوح كار و جلوگيري از سائيدگي آنها استفاده مي شود.
دماهاي AC3, ACI براي اكثر فولادها در كتاب ها قابل دسترسي مي باشند ولي اغلب لازم است كه براي يك فولاد با تركيب غيرمعمولي دمايي را كه بالاي آن ساخت را قطعه تماماً به آستنيت تبديل مي گردد برآورد كرد فرملو زير محاسبه حداقل دماي آستنيتي كردن ساختار را با تقريب دقيق تري به دست مي دهد.
At+(°F) = 1570-323(%C)-25(%Mn)+80(%Si)-32(%Ni)-3(%Cr)
اين فرمول توسط گرانژ ابداع شده است و براي فولادهايي كه  3/0  تا 6/0   درصد كربن، صفر تا 2 درصد منگنز، صفر تا 1 درصد سيليس، صفر تا 5/3 درصد نيكل، صفر تا 5/1 درصد كرم و صفر تا 5/0  درصد موليبدن داشته باشند صادق است.
دماي واقعي كردن براي جوش ها بايد حداقل °F 50  بيشتر از دماي محاسبه شده به وسله فرمول بالا باشد.
در فرايند سختكاري، سرد كردن قطعه اغلب به صورت كوئنچ در يك مايع انجام مي شود. اين قسمت فرايند بسيار مهم است چون ممكن  است در اثر غلط بودن روش، ترك ايجاد شود. فرو بردن ناگهاني فولادهاي گرم و سرخ در يك مايع مي تواند داراي سه مرحله متمايز باشد كه سرعت انتقال حرارت را از فلز به مايع مشخص مي كنند. هنگامي كه يك مايع كوئنچ  كننده مانند آب داراي نقطه جوش پاييني باشد، فولاد گرم و سرخ به محض ورود به داخل آن توسط توده بخار محاصره مي شود كه اين لايه بخار باعث كند شدن سرعت انتقال حرارت مي گردد. پس از اينكه سطح قطعه تا اندازه اي سرد شده ضخامت لايه بخار كم و به تدريج ناچيز مي شود و مايع فرصت پيدا مي كند  كه با قطعه در تماس بوده و بلافاصله شروع به جوشيدن مي نمايد.  در اين موقع به علت تبخير آب و انتقال حرارت به صورت جابجائي وتشعشع، سرعت سرد شدن قطعه زياد مي شود پس از مدتي جوشش مايع متوقف شده و قطعه با سرعت كم و فقط به روش جابجائي سرد مي شود.  اين سه مرحله در اكثر فرايندهاي كوئينچ اتفاق مي افتد ولي مدت هر مرحله به نوع مايع مصرفي بستگي دارد.
هنگامي كه وان هاي نمكي براي كوئينچ به كار مي روند به محض ورود قطعه گرم به داخل آن لايه هاي بخار تشكيل نمي شوند بنابراين مرحله اول از فرايند حذف مي گردد، سرد شدن بلافاصله آغاز مي شود  ولي به علت نجوشيدن مايع و اختلاف كم بين دماي قطعه و  دماي مايع  سرعت سرد شدن قابل توجه نيست در كوئنچ با روغن به علت بالا بودن دماي جوش اكثر روغنها مرحله دوم كوتاه مدت است در محلولهاي آب نمك، مرحله اول فرايند يعني تشكيل بخار به علت خاصيت نمك، به كلي حذف مي شود، در نتيجه سرد شدن خيلي سريع انجام مي شود.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 12:55 |

جوشکاری اصطکاکی نسبت به دیگر انواع جوش نظیر قوس الکتریکی، جوشکاری لیزری و جوشکاری با گاز، مزایای بسیاری دارد. این نوع جوشکاری تنها برای قطعاتی میسر است که شکل دوار داشته باشند زیرا عمل جوش توسط حرارت حاصل از چرخش سریع و تحت فشار یک یا هر دو قطعه نسبت به یکدیگر صورت می‌پذیرد، اما با استفاده از روش جوشکاری اصطکاکی تلاطمی، می‌توان ورق‌های فلزی را نیز به یکدیگر پیوند داد. در این مقاله به معرفی مختصر این روش می‌پردازیم.

امروزه صفحات چند پارچه جوشکاری شده به سرعت جای خود را در صنعت خودرو باز می‌کنند زیرا با استفاده از آنها می‌توان مواد اولیه با ضخامت‌های مختلف و خواص مختلف را به شکل یک قطعه و با پرس و استمپینگ شکل داده و به این ترتیب خواص محصول را بهبود بخشید. این بهبود از طرق گوناگون می‌تواند بر قطعات منفصله و نیز خود خودرو اعمال شود.
اصولاً کاهش وزن به منظور رسیدن به استانداردهای مصرف سوخت هدف اصلی به‌کارگیری صفحات چند پارچه جوشکاری شده بوده است. علت بخش اعظم کاهش وزن این است که به‌جای استفاده از ورق ضخیم در کل قطعه، در جایی که نیاز به استقامت بیشتر دارد از مواد ضخیم و در جایی که استقامت زیاد مورد نیاز نیست، از مواد با ضخامت کمتر استفاده می‌شود.
از دیگر امتیازهای استفاده از صفحات چند پارچه جوشکاری شده، می‌توان به کاهش صدای خودرو، کاهش دور ریز مواد و کاهش هزینه استمپینگ، اشاره کرد. کاهش صدا در اثر جوشکاری قطعات و ساختن آنها به شکل قطعه‌ای صلب به جای استفاده از پیچ و پرچ یا نقطه جوش، حاصل می‌شود. بر اثر استفاده از مواد نازک‌تر در برخی نواحی و عدم استفاده از ورق در قسمت‌هایی که سوراخ‌ها و شکاف‌های بزرگ‌ دارند، دور ریز مواد کاهش می‌یابد. هزینه استمپینگ به این دلیل کاهش می‌یابد که برای یک قطعه مشخص به تعداد کمتری استمپ، قالب و عملیات شکل‌دهی نیاز خواهیم داشت.

شکل 1 : قطعات قابل ساخت با استفاده از صفحات چند پارچه جوشکاری شده

کاهش تعداد قطعات، بهبود تلرانس‌های ابعادی، افزایش استحکام قطعات، کاهش هزینه‌های ساخت، مقاومت دربرابرخوردگی و کاهش لرزش خودرو از دیگر مزایای این روش هستند.
از جمله روش‌های جوش دادن قطعات چند پاره، می‌توان به جوشکاری لیزری اشاره کرد که هم‌اکنون بیش‌ترین کاربرد را دارد. جوشکاری لیزری سریع و دقیق بوده و قابلیت جوش دادن مواد متفاوت به هم را دارد و به‌طور گسترده‌ای نیز مورد استفاده قرار می‌گیرد، اما برای اینکه جوش به شکل مناسب انجام شود، باید لبه صفحات با تلرانس‌های دقیق (در حد 0.08 میلی‌متر) برش خورده باشند. برای رسیدن به این تلرانس‌ها، باید از دستگاه‌های برش ویژه استفاده کرد. مشکل دوم جوشکاری لیزری این است که سختی منطقه جوشکاری بیشتر شده و در زمان فرم‌دهی ورق امکان شکست ترد وجود دارد. گذشته از موارد فوق، امکان جوشکاری آلومینیم، ورق‌های ساندویچی و برخی مواد دیگر با روش جوشکاری لیزری وجود ندارد. دستگاه‌های لازم برای این روش نیز بسیار گران‌قیمت بوده و فقط برای تیراژ‌های بسیار بالا مناسبند.

جوشکاری اصطکاکی تلاطمی
جوشکاری اصطکاکی تلاطمی (FSW) فرایند‏ی برای اتصال قطعات است که در آن، یک قطعه چرخان با فشار و سرعت چرخشی زیاد در درز یا محل همپوشانی دو قطعه حرکت می‌کند. لبه ‌قطعات بر اثر حرارت حاصل از اصطکاک ذوب شده و ابزار درحال چرخش، مواد مذاب را به هم زده و جلو می‌رود. در شکل 2، نمایی از این فرایند‏ را می‌بینید. همان‌گونه که در شکل دیده می‌شود، ابزار در محل درز دو قطعه قرار داده شده و ضمن چرخش به جلو حرکت می‌کند. در یک سمت سرعت خطی حاصل از چرخش ابزار با سرعت پیشروی ابزار جمع می‌شود که این سمت را سمت پیشرو جوش می‌نامند. در سمت دیگر سرعت خطی حاصل از چرخش ابزار از سرعت پیشروی ابزار کاسته می‌شود که این سمت را سمت بازگشتی جوش می‌نامند.

شکل 2 : نمایی از فرایند‏ جوشکاری اصطکاکی تلاطمی

در شکل 3 نمایی شماتیک از ابزار و در شکل 4 یک قطعه ابزارگیر را می‌بینید. شکل شانه (پایه) ابزار می‌تواند با آنچه در شکل 3 دیده می‌شود متفاوت باشد، اما طرح کلی عموماً به همین صورت است.

شکل 3 :شکل شماتیک ابزار FSW

از روش جوشکاری FSW ابتدا برای جوش دادن موادی مانند آلومینیم که دمای ذوب کم‌تری دارند، استفاده شد. مواد دارای دمای ذوب پایین را می‌توان با استفاده از ابزارهایی از جنس فولاد مانند H13 جوش داد. با پیشرفت تحقیقات کم‌کم جوش دادن فولاد، فولاد ضد زنگ و تیتانیم نیز میسر شد. این مواد که دمای ذوب بالاتری دارند، به هنگام جوشکاری، حرارت و فشار بیشتری ایجاد کرده و ابزارهای جوشکاری آنها باید از مواد متفاوتی ساخته شود که تحقق این امر تا در دسترس قرار گرفتن ماده PCBN طول کشید.

شکل 4 : ابزار و ابزارگیر

کیفیت جوشکاری در جوشکاری تلاطمی اصطکاکی بسیار خوب بوده و نسبت به روش‌های رایج نقایص کم‌تری دارد. از آن‌جا که دمای محیط در این روش پایین‌تر از نقطه ذوب فلز است، الزامات حفاظتی کم‌تری نیز مورد نیاز است. به عنوان مثال، استفاده از محافظ ضد تشعشع کاملاً منتفی است.
جوشکاری تلاطمی اصطکاکی نسبت به کیفیت برش لبه‌ها حساسیت زیادی ندارد، چرا که موادی که تحت عمل جوش قرار گرفته‌اند توسط ابزار به‌هم زده می‌شوند و بنابراین درزهای کوچک به خودی‌خود بسته می‌شوند، که این در بسیاری از کاربردها یک مزیت عمده تلقی می‌شود.

شکل 5 : نمایی واقعی از فرایند‏ جوشکاری FSW

معایب جوشکاری اصطکاکی تلاطمی
این روش نیز همانند روش‌های دیگر، معایبی در کنار مزایای خود دارد. درحال حاضر سرعت حرکت ابزار، بسیار کم‌تر از جوشکاری لیزری است. در آلومینیم که فلزی نرم بوده و تحقیقات زیادی روی آن انجام شده است، سرعت جوشکاری حداکثر به 108 سانتی‌متر بر دقیقه می‌رسد. سرعت جوشکاری در فولاد پایین‌تر از آلومینیم است.
برای نگهداشتن قطعات نیز به نیروی زیادی نیاز داریم زیرا در حین فرایند‏ جوشکاری، گشتاور زیادی بر قطعات اعمال می‌شود.
با پیشرفت تکنولوژی این معایب کم‌رنگ یا حذف خواهند شد. علاوه بر آن، قیمت یک دستگاه جوشکاری اصطکاکی تلاطمی کسری از قیمت یک دستگاه جوشکاری لیزری است و به این ترتیب سرعت جوش بر واحد هزینه می‌تواند حتی بیش‌تر از جوشکاری لیزری باشد.

کلام آخر
امروزه جوشکاری اصطکاکی تلاطمی به عنوان یک روش برتر برای پیوند دادن سطوح منحنی، مقاطع با ضخامت‌های متفاوت، و اجسامی که از مواد فلزی متفاوت تشکیل شده‌اند مطرح است. این روش جوشکاری تا کنون جای خود را در صنایع هوایی باز کرده و در صنایع خودروسازی نیز به سرعت رو به گسترش است. با طراحی و توسعه مواد جدید برای ابزار چرخانی که اساس کار این روش بر آن استوار است، محدوده کاربرد FSW از قطعات آلومینیمی به قطعات فولادی نیز گسترش یافته است. هم‌اکنون برخی از دانشگاه‌های کشور مطالعاتی را در این زمینه آغاز کرده‌اند، و شاید در آینده شاهد کاربرد این فرایند‏ در صنعت خودرو کشور باشیم.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 12:52 |

جوشکاری به روش نقطه جوش

جوشکاری به روش نقطه جوش
صنایع مدرن و پیشرفته امروزه رقابت شدید در تولیدات صنعتی و نظامی سبب پیشرفت سریع جوشکاری گردید اصولی که از جوشکاری مورد انتظار است این است که:

جوش سریع و تمیز باشد
مخارج تهیه مواد جوشکاری کم باشد
مخارج تهیه ماشین آلات حداقل باشد
به کاربرد همه جانبه واستفاده صحیح در همه جا از دستگاه جوشکاری ممکن باشد.
از دستگاههای سنگین جوشکاری یا دستگاههای زمینی برای جوشکاری ورقهای نازک و غیره نمی توان استفاده کرد.

نقطه جوشها به علت طرز کار صحیح و سریع با استفاده از فک های جوشکاری و مقاومت الکتریکی کاربرد زیادی در صنایع دارند و با اتصال دو قطب به ترانسفورماتور مبدل و فکهای آنها در اثر عبور جریان از نقطه تماس فکها و خاصیت مقاومت جریان به سرعت حوزه مشخصی گرم شده و چون این گرم شدن تا حد ذوب در نقطه مشخص و محدود است به علت سادگی و تمیزی از آنها استفاده می گردد. جریان آب در داخل فکها سبب جلوگیری از ذوب شدن آنها شده و این دستگاهها به اندازه های مختلف ساخته می شوند و علت اصلی ابداع نقطه جوش برای جوشکاری صفحات نازک می باشند که با دستگاههای دیگر جوشکاری به سختی ممکن می باشد.
قطعات مختلف نقطه جوش نوع شلاتر
توضیح اینکه کارخانجات شلاتر دارای انواع دستگاههای نقطه جوش یا جوش دادن نقطه بوده و از ریزترین قطعات تا بزرگترین قطعات را از لحاظ دستگاه جوشکاری با آمپراژ و قدرت مشخص تامین می نماید.

توصیف شکل

بازوهای جوشکاری نقطه جوش یا الکترودهای جوشکاری از پروفیل مخصوص
محل یا قلاب اتصال نقطه جوش (چون این نوع جوشکاری آویز در اکثر کارخانجات تولیدی استعمال می شود و بایستی کاملاً سریع التغییر و سریع العمل باشد).
دستگیره با محل گرفتن و فرمان دادن متخصص جوشکاری و قطعات و وسائل فرمان نیز دیده می شود برای سیلندر یا بدنه نقطه جوش
سیلندر نقطه جوش یا بدنه اصلی برای کورس دوبل یا تک با تغییر دهنده کورس سیلندر و ضربه گیر مربوطه که عمل تغییرات مکانی را به طور کلی انجام می دهد.
ترانسفورماتور جوشکاری که در خلاء ریخته شده و با آب سرد می شود . طبقه بندی ایزولاسیون . F
سردکنندگی سریع با آب در حداکثر زمان اتصال که چنانچه مدت زیادی هم وصل باشد سرد کنندگی انجام می گیرد.
محل اتصال کابل به دستگاه و سیمهای فرمان که بر طبق طول ضروری سری آن حداکثر 10 متر طول دارد و حداکثر دقت در طراحی و ساخت آن به عمل آمده تا از لحاظ اتصالات الکتریکی صیحیح باشد.
بازوی پائینی نقطه جوش که طوری طراحی گردیده است که احتیاج زیاد به رسیدگی و کنترل ندارد و مفاصل و اتصالات کاملاً دقیق می باشند.
فاصله صحیح و قابل تغییر مطابق با احتیاجات کار بازوی جوشکاری را می توان تغییر داد و بسته به ابعاد کار آن را تنظیم کرد.

مسئله مهم در نقطه جوش "اول ورود جریان آب و خروج آن ، از فک ها یا بازوهای جوشکاری است که بایستی دقیقاً کنترل شودکه باعث سوختن فک ها و دستگاه نشود.

مسئله دوم – زمان اتصال نقطه جوش است که در بعضی مواقع نیز از تامیر استفاده می گردد (قطع و وصل کننده دقیق زمان)

مسئله سوم- انتخاب صحیح الکترود یا دستگاه جوش با آمپر و و لتاژ مناسب می باشد که بسته به ضخامت کار بایستی طراحی و خریداری گردد.

مسئله چهارم – تمیز بودن فکهای جوشکاری به وسیله سنباده یا سوهان می باشد که اتصالات پهن و نا دقیق به دست ندهد و بایستی فکها پس از مدتی تیز شوند.

انواع وسایل نقطه جوش دستی و آویز و لوله های اتصال آب به فک های آنها نشان داده شده است این شکل نوعی آموزش بصری و توضیحی است که جایگزین عدم وجود امکانات کارگاهی دیگر می گردد.


فرآيند جوش نقطه‌اي RESISTANCE SPOT WELDING ))
عوامل موثر بر جوش نقطه‌اي  :  

توليد گرما در يك تماس الكتريكي به سه فاكتور بستگي دارد كه با اين فرمول نشان مي‌دهيم Q = RTI2
I = شدت جريان بر حسب آمپر
R = مقاومت بر حسب اهم
T = زمان بر حسب ثانيه
Q = حرارت بر حسب ژول
فاكتورهاي شدت جريان و زمان از طريق دستگاه جوش قابل كنترل هستند، اما مقاومت الكتريكي به عوامل مختلف بستگي دارد از جمله:
جنس و مقاومت قطعه كار
فشار بين الكترودها
اندازه و فرم و جنس الكترودها
چگونگي سطح كار (صافي و تميزي آن)
كاربرد صحيح جوش نقطه اي به عملكرد مناسب و كنترل متغيرهاي زير بستگي دارد:
جريان (current)
فشار (pressure)
زمان (time)
مساحت نوك الكترود (contact area electrode)
تعادل حرارتي
اثر مقاومت ها:
در يك پروسه نقطه جوش 7 مقاومت الكتريكي وجود دارد كه در شكل زير مي بينيد.
مقاومت 1 و 7 مقاومت الكتريكي در الكترودها و هادي ها تا سر ثانويه مي باشد . مقاومت 2 و 6 مقاومت الكتريكي تماس الكترود و فلز اصلي است بزرگي اين مقاومت به كيفيت سطح در فلز پايه  و الكترود بستگي دارد . اين مقاومت ناخواسته بوده و بايد حتي المقدور آنرا كاهش داد . تميزي سطح كار و الكترود و نيروي فشاري وارد بر الكترود عوامل تقليل دهنده اين مقاومت مي باشند. مقاومت هاي 3 و 5 مجموع مقاومت هاي خود فلز پايه است كه مقاومت نسبت مستقيم با ضخامت و نسبت معكوس با سطح مقطعي كه جريان از آن عبور مي كند دارد. ( R = p L/A ) اين مقاومت ها به ضريب مقاومت الكتريكي و درجه حرارت قطعه كار نيز بستگي دارند. مقاومت 4 مقاومت تماس دو ورق مهمترين قسمت است كه بالاترين مقاومت بوده و از آنجايي كه حرارت توليد شده در اين نقطه كمتر منتقل مي گردد باعث ايجاد جوش در اين ناحيه مي شود. فلزات داراي مقاومت الكتريكي كم بوده و درنتيجه مقاومت هاي اهميت بيشتري پيدا مي كنند.

نكته: در محل تماس الكترود و فلز به دو دليل دما بالا نمي رود:
سطح الكترود تميز شده لذا اتصال بين الكترود و فلز در نقاط كمتري اتفاق مي افتد.
الكترود مسي با آب سرد مي شود.
اثر جريان:

به دليل توان دو، جريان الكتريكي بيشترين اثر را در ايجاد گرما دارد كه افزايش آن باعث افزايش جنبش مولكولي و افزايش مقاومت جوش مي شود، ولي اگر جريان بيش از اندازه گردد حرارت در ناحيه جوش بسيار بالا رفته و ذوب فلز تا سطح آن گسترش مي يابد و فضاي خارج از الكترود ذوب شده و در نتيجه باعث پاشيدن فلز مذاب مي گردد. پس در اين جوش، به جريان كافي براي گرم كردن فلزات و رساندن آنها به حد خميري نياز است. مقدار جريان براي جوش را با توجه به ضخامت ورق و كلاس جوش مي توان با استفاده از قسمت كنترل جريان كه بر روي دستگاه پيش بيني شده است، تنظيم كرد.
اثر حرارت:

مجموع حرارت توليد شده متناسب با زمان جوش است بالاجبار مقداري از حرارت به وسيله انتقال به فلز پايه الكترودها تلف خواهد شد، مقدار كمي از تلفات نيز به وسيله تشعشع است. طولاني شدن بيش از اندازه زمان جوش همان اثر شدت جريان بيش از اندازه را بر روي فلز اصلي و الكترودها مي گذارد از اين گذشته اثري كه در فلز پايه در ناحيه جوش به وجود مي آيد بيش از اندازه خواهد شد. كم بودن زمان جوش باعث مي گردد ناحيه ذوب به دماي مناسب نرسد و در نتيجه عدسي جوش تشكيل نشده يا عدسي تشكيل شده در حد مطلوب نباشد.
اثر فشار:

در تهيه جوش مقاومتي به دو سري فشار نياز داريم:
الف) فشار جوش    ب) فشار چكشي
الف) فشار جوش :  

تأثير مقاومت R در فرمول حرارت به صورت فشار جوشكاري نمايان مي شود كه آن نيز متأثر از مقاومت سطح تماس بين قطعات كار است. قطعات كار در عمليات نقطه جوش، درز جوش و پرس جوش بايستي محكم به يكديگر در محل جوش بچسبند تا جريان الكتريكي قادر باشد از آنها عبور كند. با افزايش فشار، مقاومت تماس و حرارت توليد شده در فصل مشترك كاهش مي يابد. با كاهش حرارت در سطح، شدت جريان و زمان جوش بايستي افزايش يابد تا كاهش مقاومت جبران شود. با افزايش فشار، نسبت بين سطح تماس حقيقي به سطح تماس اسمي افزايش يافته و لذا مقاومت كم مي گردد. كاهش فشار بيش از اندازه باعث مي شود سطح تماس واقعي دو فلز كم شده و در نتيجه دانسيته جريان بالا رفته و حرارت بيش از اندازه توليد مي گردد از سوي ديگر فشار مذاب بين دو قطعه باعث پرتاب شدن مذاب به خارج از ناحيه جوش شده و در جوش جرقه ايجاد مي كند.
) فشار چكشي:
فشاري است كه بعد از قطع جريان جوشكاري، قطعات مورد نظر به هم وارد مي كنند.
تعادل حرارتي:

تعادل حرارتي هنگامي رخ مي دهد كه ارتفاع ذوب (نفوذ) در دو قطعه كار يكسان باشد. در اكثر كاربردها اين حالت اتفاق مي افتد ولي در بسياري از موارد به علل ذيل تعادل حرارتي اتفاق نمي افتد.
نسبت ضريب هدايت حرارتي و الكتريكي قطعات كه به هم متصل شده اند.
نسبت هندسي در قسمت هاي اتصال ضريب الكتريكي و حرارتي درالكترودها شكل هندسي الكترودها هنگامي كه قطعات جوش داده مي شوند، اگر اختلاف تركيبي يا اختلاف ضخامت يا هر دوي اينها را داشته باشند حرارت نامتقارن خواهد بود. در بسياري از حالات با طراحي قسمت ها و جنس الكترود، عدم تعادل حرارتي مي تواند مينيم گردد. اغلب تعادل حرارتي با كوتاه كردن زمان جوش يا استفاده از جريان هاي پايين تر كه جوش قابل قبولي را مي سازد، بهبود مي يابد.
سيكل جوشكاري:
در حين جوش نقطه اي چهار فاصله زماني وجود دارد:

زمان فشار قبل از جوش: فاصله زماني ما بين وارد آمدن نيرو تا بكار گرفتن جريان. اين زمان براي اطمينان از اتصال كامل الكترودها به قطعه كار و كامل شدن نيروي الكترود قبل از برقراري جريان جوش است.
زمان جوش: زماني كه جريان براي ايجاد يك جوش داخل قطعه برقرار مي گردد.
زمان نگه داشتن بعد از جوش: زماني كه بعد از قطع جريان الكترودها هنوز بر روي قطعه كار قرار دارند. در خلال اين زمان عدسي جوش جامد و سرد شده و مقاومت آن به حد كفايت مي رسد.
زمان خاموش: فاصله زماني بين آزاد شدن الكترودها پس از خنك شدن جوش و آغاز سيكل بعدي را مي گويند.
براي اصلاح خواص مكانيكي و فيزيكي جوش مي توان يكي يا بيش از يكي از حالت هاي زير را در سيكل جوش ايجاد نمود.
نيروي پيش فشار براي قرار گرفتن الكترودها و قطعات كار با هم
عمليات پيش گرم براي كاهش دادن گراديان دما در زمان شروع جوشكاري
زمان سرد كردن و عمليات حرارتي براي بدست آوردن خواص مقاومتي جوش آلياژهاي فولاد سخت شونده
عمليات پس گرم براي تنظيم كردن اندازه دانه جوش در فولادها
جريان آرام براي سرد شدن (به ويژه در آلياژهاي آلومينيم)
از نظر اقتصادي لازم است كه فاكتور زمان حتي المقدور كاهش يابد.
مساحت نوك الكترود:
اندازه جوش بوسيله مساحتي كه در تماس با نوك الكترودها است كنترل مي شود و اين مساحت را مي توان متناسب با نيازهاي هر كار و با استفاده از زوج الكترودهاي گوناگون به دلخواه تغيير داد.
چگالي جريان فشار:
از حاصل تقسيم مقدار جريان عبوري بر سطح مقطع چگالي جريان الكتريكي بر حسب A/mm2 و از تقسيم مقدار نيرو به سطح مقطع چگالي نيرو بر حسب Kg/mm2 بدست مي آيد. چگالي جريان در واقع بيانگر دو پارامتر مقدار جريان و سطح الكترود در جوشكاري است. انتخاب مقدار مناسب چگالي جريان باعث افزايش راندمان جوش و كم كردن اتلاف انرژي مي گردد. هنگامي كه چندين نقطه جوش ايجاد شد معمولاً سطح الكترود قارچي شده و باعث مي گردد چگالي جريان الكتريكي از حد مجاز كمتر شده و جوش انجام نشود. براي رفع اين نقيصه در سيستم هاي فرمان افزايش پله اي يا يكنواخت جريان مناسب با تعداد جوش پيش بيني مي گردد و در مورد چگالي نيرو نيز با افزايش سطح مقطع الكترود چگالي كاهش پيدا كرده و باعث عدم اجراي جوش مي گردد و براي رفع آن از رگولاتورهاي تنظيم كننده فشار استفاده مي شود.
تجهيزات جوش نقطه اي:

دستگاه هاي جوشكاري مقاومتي شامل دو واحد كلي است: واحد الكتريكي (حرارتي) و واحد فشاري (مكانيكي). اولي باعث بالا بردن درجه حرارت موضع مورد جوش و دومي سبب ايجاد فشار لازم براي اتصال دو قطعه لب روي هم در محل جوش است. منبع معمولي تامين انرژي الكتريكي، جريان متناوب 220 يا 250 ولت است كه براي پايين آوردن ولتاژ و افزايش شدت جريان (به مقدار مورد نياز براي جوشكاري مقاومتي) از ترانسفورماتور استفاده مي شود. جريان الكتريكي از طريق دو الكترود (فك ها) به قطعه كار و موضع جوش هدايت مي شود كه معمولاً الكترود پايين ثابت و بالايي متحرك است. الكترودها همانند گيره يا فك ها دو قطعه را در وضعيت لازم گرفته و جريان الكتريكي براي لحظه معين عبور مي كند كه سبب ايجاد حرارت موضعي، زير دو الكترود در سطح مشترك دو ورق مي شود. جريان الكتريكي در سطح تماس باعث ذوب منطقه كوچكي از دو سطح شده و پس از قطع جريان و اعمال فشار معين و انجماد آن، دو قطعه به يكديگر متصل مي شوند. بخش ديگري از دستگاه هاي جوش مقاومتي را سيستم هاي جوش فرمان تشكيل مي دهند. اين سيستم ها كه وظيفه كنترل زمان و جرياني پروسه را بر عهده دارند از دو بخش قدرت و فرمان تشكيل شده اند.
بخش فرمان آنها امروزه از مدارهاي ميكروپروسسورها تشكيل شده كه جريان جوشكاري با دقت سيكل برق شهر و كمتر از آن كنترل مي كنند. بخش قدرت اين سيستم معمولاً از يك مدار تايرستوري با كليدهاي ظرفيتي بالا و حفاظت جان و تجهيزات براي قرايت جريان الكتريكي ثانويه تشكيل شده است. اين سيستم ها معمولاً با برق AC كار كرده و در برخي از ماشينها پس از توليد جريان AC ركتيفايرهاي خاص، جريان تبديل به DC مي گردد. ماشين هاي جوش مقاومتي به سه دسته اصلي تقسيم مي شوند:
ماشين هاي ايستگاهي مانند انواع نقطه جوش هاي ايستگاهي پرس جوش و … اين ماشين ها در محل خود مستقر شده و قطعه كار توسط اپراتور با يك سيستم اتوماسيون در داخل آنها جوشكاري مي شوند.
ماشين هاي قابل حمل كه به دو گروه ترانس جدا و ترانس سر خود تقسيم مي شوند. در اين نوع ماشين ها قطعه كار داخل جيگ و فيكسچرها ثابت شده و دستگاه جوش نقطه مشخص شده را جوش مي دهد.
ماشين مخصوص مانند اتوگانها و روبوگانها يا دستگاه هاي ويژه اي كه در كاربردهاي خاص به كار گرفته مي شوند.
ساختمان گان جوشكاري:

مهمترين قطعات به كار رفته در يك گان جوشكاري از اين قرارند:
چهارچوب، انبر، بازوها، جك بادي، ترانس، شيرهاي هوا، سنسورهاي القايي، ميله راهنمايي سنسورها، پايدار كننده هاي بادي، ضربه گير، اتصال رابط به گريپر و ...
مدار آب:

براي خنك كاري بازوها، انبر و نيز ترانس در هر تفنگ جوشكاري، لازم است تا يك مدار گردش آب در نظر گرفته شود.
مدار بيروني آب:
 مدار بيروني آب، شامل يك خط لوله برگشت است كه آب در مدار رفت، نخست به يك صافي وارد مي شود، سپس از يك شير قطع جريان مي گذرد كه با دريافت سيگنال، سيم پيچ مغناطيسي آن، محور فلزي درونش را به جلو مي راند و بدين روي، جريان آب ورودي به مدار،  قطع مي گردد. آب ورودي به تفنگ جوشكاري پس از انجام خنك كاري از آن خارج شده، به يك شير سنجش مقدار جريان وارد مي شود. در صورتي كه مقدار جريان كمتر از اندازه مجاز باشد، اين شير، جريان آب را مي بندد. پس از عبور آب از اين شير، يك نشانگر جريان، باز بودن مدار خروج آب را نمايش مي دهد.
مدار دروني آب:
 مدار دروني ابزار جوشكاري، شامل راهروهاي باريكي است كه در بازوها، انبر، قطعات واسطه و نيز پوسته بيروني ترانس تعبيه شده اند و به كمك شيلنگ هاي كوچكي به هم متصل شده اند؛ به طوري كه آب خنك از طريق شلينگ به يك سر هر يك از قطعات نامبرده وارد مي شود و از سر ديگر آن خارج مي شود. لازم به توضيح است كه مطابق شكل زير، در قطعه انتهايي بازوها، آب از يك لوله باريك فلزي يا پلاستيكي كه در راهروي دروني قطعه نصب شده است به طرف نوك الكترود حركت مي كند و پس از خنك كردن نوك الكترود از فضاي خالي ميان سطح بيروني لوله نازك و سطح دروني به طرف عقب بر مي گردد و از قطعه خارج مي شود.
مدار باد: 

مدار بيروني باد:
مدار باد، از نقطه ورود به سلول تا نقطه پاياني مصرف در جك تفنگ جوشكاري، را گفته مي شود. در آغاز مسير باد، يك شير گازي براي قطع سريع جريان باد پيش بيني شده است. سپس شلنگ كشي تا ابتداي واحد مراقبت انجام شده است. پيش از ورود باد به اين دستگاه، يك انشعاب براي دستگاه تراش نوك الكترود گرفته شده است. اين دستگاه در دو گونه برقي و بادي وجود دارد كه در گونه دوم، محرك تيغچه تراشكار، نيروي باد است. علاوه بر اين، از جريان باد براي زدودن تراشه هاي نوك الكترود از روي تيغچه نيز استفاده مي گردد.
باد پس از ورود به واحد مراقبت، تميز مي شود و اندكي روغن روانساز به آن زده مي شود استفاده مي گردد. باد پس از ورود به واحد مراقبت، تميز مي شود و اندكي روغن روانساز به آن زده مي شود تا براي استفاده در شيرها و جك بادي آماده گردد. در ابتداي مسير خروجي باد از واحد مراقبت، يك شير كنترل فشار نصب شده تا در صورت افت فشار خط از يك ميزان قابل تنظيم، جريان را به كمك سيم پيچ مغناطيسي و محور متحركش قطع نمايد. بدين ترتيب كه پيچ تنظيم آن را بر روي فشار دلخواه (كمترين مقدار مجاز) قرار مي دهيم. اگر فشار باد از اين ميزان كمتر شود، يك سيگنال به كنترل كننده فرستاده مي شود و متعاقباً سيگنال ديگري به شير باز برمي گردد كه جريان را در سيم پيچ برقرار مي نمايد. در اثر تشكيل ميدان مغناطيسي در سيم پيچ، هسته، فريتي (محور متحرك) به جلو رانده مي شود و جلوي عبور هوا را مي گيرد تا مدار باد، بسته شود.
مدار دروني باد:
 پس از عبور از شير كنترل فشار، باد از طريق شلنگ به بالاي روبات كه محل نصب صفحه نگهدارنده شيرها است، هدايت مي شود و به ورودي مشترك شيرهاي فرمان مي رسد.
در اين موضع در گان هاي دو مرحله اي به ترتيب (4) حركت دهنده مرحله يكم يا حركت MX شير (5) حركت دهنده، مرحله دوم يا حركت Gun Action و شير (6) تامين كننده فشار لازم براي بازگشت سريع يا Back – Pressure Remove قرار دارند. در گانهاي يك مرحله اي  فقط دومين شير (شير شماره 5) نصب شده است. براي كاستن از صداي نامطلوب باد به هنگام تخليه از شيرها نيز دو عدد صدا خفه كن (7) در محل خروجي هاي مشترك شيرها به كار گرفته شده اند. لازم به ذكر است كه در برخي گان هاي جوشكاري، از دو شير فرمان كه بر روي خود گان جاي داده شده اند، همراه با شيرهاي تخليه سريع (8) كه در مجراهاي ورودي و خروجي جك نصب شده اند، استفاده شده است تا حركت سريع پيستون جك، در رفت و برگشت تامين شود.
چگونگي عملكرد گان جوشكاري:

عملكرد اين وسيله، بسته به اين كه نيروي محرك آن باد باشد يا الكتريسيته، متفاوت است. در نوع بادي، با هدايت جريان هوا به ابتدا و انتهاي سيلندر يا جك، حركت خشن رفت و برگشتي پيستوني جك انجام مي پذيرد كه مي توان با استفاده از شير تناسبي نيروي اعمالي ميان دو سر الكترودها را تنظيم نمود ولي كنترل سرعت حركت اين الكترودها نيازمند به كار بردن دو قطعه، كنترل دبي هوا در مجراهاي ورودي و خروجي جك است. البته سرعت حركت پيستون با اين روش در تمام طول مسير، به صورت يكنواخت باقي مي ماند و تنظيم سرعت هاي مختلف حركتي در خلال فرايند باز شدن يا بسته شدن جك امكان پذير نيست. در مواردي كه چنين نيازي وجود داشته باشد، از تفنگ جوشكاري با محرك سرو ـ موتور استفاده مي شود. در اين دسته از ابزارهاي جوشكاري مي توان با تغيير جريان الكتريكي، سرعت حركت الكترودها را تنظيم نموده و در هر نقطه از مسير رفت و برگشت الكترودها را متوقف نمود. اين قابليت سبب مي گردد تا زمان مورد نياز براي پوشاندن يك چرخه كاري، به كمترين مقدار خود برسد. چرا كه پس از اعمال هر نقطه جوش ، براي اعمال نقطه جوش بعدي بر روي قطعه كار، الكترودها به اندازه كمترين مقدار لازم از هم باز مي شوند و نيازي نيست كه تا انتهاي كورس خود ، از هم دور شوند. بدين ترتيب ، زمان اتلافي براي موضع گيري ابزار به هنگام اعمال هر نقطه جوش جديد كاهش مي يابد. اين صرفه جويي زماني، در برخي موارد كه چرخه كاري زماني يك روبات براي اعمال كليه نقطه جوش هاي آن ايستگاه، فشرده است مي تواند بسيار راهگشا واقع گردد. از ديگر مزاياي اين گونه گان هاي جوشكاري، كم صدا بودن آنها در مقايسه با گونه بادي است. چون هم از صداي تخليه هوا خبري نيست و هم الكترودها بدون ضربه به هم برخورد مي كنند. چرا كه با كاهش شتاب حركت الكترودها در انتهاي مسيرشان، از كوبيده شدن نوك الكترودها برهم جلوگيري مي شود و بر خلاف گان هاي بادي، حركت در اين دستگاه ها نرم و بدون ضربه است. اين ويژگي علاوه برآن كه عمر الكترودها را افزايش مي دهد، سبب مي گردد تا جوش با كيفيتي نيز حاصل شود، چون فرورفتگي در موضع جوش براي يك جوش خوب با توجه به ضخامت ورق ها نبايد از ميزان مشخصي بيشتر شود. اين دستاورد با تنظيم جريان گيرش به هنگام نزديك شدن نوك الكترودها به همديگر و در نتيجه تنظيم نيروي اعمالي، مضاعف مي گردد. به دليل عدم اتلاف هواي فشرده در مقايسه با گان هاي بادي، بازده انرژي در اين دستگاه ها 75% بيشتر از مورد مشابه بادي است كه رقم بسيار قابل توجهي است.
ويژگي آب:

آب بايد از هرگونه ذرات معلق و رسوبات عاري باشد، در صورت وجود رسوب، باعث كاهش سطح مقطع عبوري و ايجاد عايق و سوزاندن ترانس ها مي شود.
دماي آب ورودي و خروجي، اختلاف فشار بين ورودي وخروجي، ميزان دبي عبوري، سختي آب، تركيب شيميايي و آلودگي هاي فيزيكي از جمله نكاتي هستند كه چنانچه مورد دقت قرار نگيرند آسيب جدي به دستگاه ها وارد خواهد شد

الكترودها در جوشكاري مقاومتي نقطه اي:  
الكترود در فرآيندهاي مختلف مقاومتي مي تواند به اشكال گوناگوني باشد كه داراي چندين نقش است از جمله هدايت جريان الكتريكي به موضع اتصال، نگهداري ورق ها بر روي هم و ايجاد فشار لازم در موضع مورد نظر و تمركز سريع حرارت در موضع اتصال. الكترود بايد داراي قابليت هدايت الكتريكي و حرارتي بالا و مقاومت اتصالي يا تماسي (contact resistance) كم و استحكام و سختي خوب باشد، علاوه بر آن اين خواص را تحت فشار و درجه حرارت نسبتاً بالا ضمن كار نيز حفظ كند. از اين جهت الكترودها را از مواد و آلياژهاي مخصوص تهيه مي كنند كه تحت مشخصه يا كد RWMA به دو گروه A آلياژهاي مس و B فلزات ديرگداز تقسيم بندي مي شوند، در جداول صفحه بعد مشخصات اين دو گروه درج شده است. مهمترين آلياژهاي الكترود مس ـ كروم، مس ـ كادميم و يا برليم ـ كبالت ـ مس مي باشد. اين آلياژها داراي سختي بالا و نقطه آنيل شدن بالايي هستند تا در درجه حرارت بالا پس از مدتي نرم نشوند، چون تغير فرم آنها سبب تغيير سطح مشترك الكترود با كار مي شود كه ايجاد اشكالاتي مي كند. قسمت هايي كه قرار است به يكديگر متصل شوند
بايد كاملاً بر روي يكديگر قرار داشته و در تماس با الكترود باشند تا مقاومت الكتريكي تماسي R2, R1 كاهش يابد. مقاومت الكتريكي بالا بين نوك الكترود و سطح كار سبب بالا
رفتن درجه حرارت در محل تماس مي شود كه اولاً مرغوبيت جوش را كاهش مي دهد ثانياً مقداري از انرژي تلف مي شود.
روش هاي مختلفي براي اعمال فشار پيش بيني شده است كه دو سيستم آن معمول تر است:
الف) سيستم مكانيكي همراه با پدال، فنر و چند اهرم
ب) سيستم هواي فشرده با درجه هاي اتوماتيك مخصوص كه در زمان هاي معين هواي فشرده وارد سيستم مي شود. اين فشار و زمان قابل تنظيم و كنترل است.
درسيستم اول به علت استفاده از نيروي كارگر ممكن است فشار وارده غير يكنواخت و در بعضي موارد كه دقت زيادي لازم است مناسب نباشد ولي در سيستم هواي فشرده دقت و كنترل ميزان فشار بيشتر است.
جوش مقاومتي براي اتصال فلزات مختلف بكار گرفته مي شود. مسئله مهم اين است كه چگونگي خواص فيزيكي اين فلزات ممكن است بر روي خواص جوش يا موضع اتصال تأثير بگذارد. همان طور كه اشاره شد حرارت براي بالا بردن درجه حرارت موضع اتصال توسط عبور جريان الكتريكي و مقاومت الكتريكي به دست مي آيد و يا به بيان ديگر مقاومت الكتريكي بزرگتر در زمان و شدت جريان معين توليد حرارت بالاتري مي‌كند و برعكس. مقاومت الكتريكي يك هادي بستگي به طول و نسبت عكس با سطح مقطع دارد. البته جنس هادي هم كه ميزان ضريب مقاوت الكتريكي است مهم مي باشد.
بنابراين خصوصيت جوشكاري مقاومتي با تغيير ضخامت ورق، تغيير مقطع تماس الكترود با قطعه و جنس قطعه تغيير مي كند.
البته چگونگي حالت هاي تماس الكترود با قطعات و تماس خود قطعات عوامل ديگر هستند كه فشار الكترودها و ناخالصي ها در بين اين سطوح مي توانند بر روي اين مقاومت ها موثر باشند.
مواد الكترودها :
مس وآلياژهاي آن موادي هستند كه عموما براي الكترودهاي جوش نقطه اي انتخاب مي شوند .انواع مختلف اين مواد در جدول زير آمده است :
انتخاب يك آلياژ براي الكترود بطوريكه براي تمام موادي كه جوش مي شوند قابل استفاده باشند بدلايل مختلف امكانپذير نيست .براي مثال آلومينيوم كه داراي ضريب هدايت بالايي مي باشد احتياج به الكترودي با ضريب هدايت بالا دارد تا از چسبيدن جلوگيري شود و مس سخت كشيده شده
Hard drawn )   ) يا مس تلوريوم دار عليرغم سختي پايين آن براي اين منظور مورد استفاده قرار ميگيرد .مس تلوريوم دار داراي اين خاصيت است كه براحتي ماشينكاري و پوليش ميگردد و سطح تمام شده خوبي را پديد مي آورد .مس كرومدار براي جوشكاري همه نوع فولاد مناسب است .زيرا از آلياژ مس- كادميوم سخت تر است وداراي يكنواختي دمايي بيشتري است بدون آنكه از هدايت آن زياد كاسته شده باشد .دليل اينكه مس-كادميوم براي جوشكاري ورقهاي نازك پيشنهاد ميشود اين است كه ارزان تر از مس-كروم است و قادر است كه گرماي كمتري را كه در جوشكاري ورقهاي نازك بيرون داده ميشود را تحمل كند .ورق هاي ضخيم تر باعث گرم شدن بيشتر نوك الكترود ميشوند .اگر دما به 250 درجه سلسيوس برسد ديگر آلياژ مي-كادميوم مناسب نميباشد .آلياژ مس-تنگستن معمولا بصورت بوش مورد استفاده قرار ميگيرند كه مساحتي بزرگتر از مقدار لازم براي تامين دانسيته جريان صحيح جوشكاري دارد .دانسيته جريان براي ايجاد نقطه جوش با يك الكترود معمولي در يك طرف اتصال و بوش مس-تنگستن با مساحت بزرگتر در طرف ديگر قرار دارد .نمونه هايي از الكترودها ي نقطه جوش و انبر دستگاه نقطه جوش (گان) در شكل زير آمده است
فلزات و آلياژهايي كه در ساخت الكترودها بكار ميروند به گروههاي زير كلاسه ميشوند :
كلاس 1 :
در اين مواد عمليات حرارتي انجام نگرفته و بوسيله كار سرد استحكام پيدا كرده اند .اينكار روي هدايت الكتريكي و گرمايي اثري ندارد .مواد اين كلاس براي فولادهاي كم كربن كه با لايه نازك سرب و كروم و يا روي پوشيده شده –فولادهاي نورد گرم شده و بعضي از فلزات غير آهني مانند آلومينيوم و منيزيوم توصيه ميشود .
كلاس 2 :
اين مواد داراي خواص مكانيكي بالاتر از كلاس 1 هستند ولي هدايت حرارتي و الكتريكي آنها كمتر از كلاس 1 ميباشد .خواص فيزيكي و مكانيكي اپتيمم با عمليات حرارتي يا تركيبي از عمليات حرارتي و كار سرد پديد مي آيد .مواد كلاس 2 بهترين ماده براي الكترودهايي براي كارهاي عمومي با يك رنج وسيعي از مواد و شرايط مختلف مي باشد .اين مواد در الكترودهاي نقطه جوش فولادهاي كم كربن نورد سردشده و فولادهاي ضد زنگ و فولاد با پوشش نيكل و غيره استفاده ميشود.
همچنين براي شافتها-بازوها-قالب و بندكها-فكهاي تفنگي دستگاه جوش و بقيه اعضا عبور دهنده جريان در تجهيزات جوشكاري مقاومتي مناسب است .
كلاس 3 :
مواد اين كلاس آلياژهاي سختي پذير با خواص مكانيكي بهتري از مواد كلاسهاي 1 و 2 ميباشد اما داراي هدايت الكتريكي و حرارتي پايين تري ميباشد .سختي بالا-مقاومت به سايش خوب و دماي آنيل شدن بالاي الكترودهاي كلاس 3 همراه با هدايت الكتريكي متوسط آن باعث ميشود كه اين مواد براي الكترودهاييكه در نقطه جوشهايي كه در آنها فشار مقاومت قطعات بالا است استفاده ميشود .اين مواد براي فولادهاي كم كربن با سطح مقطع بالا و فولادهاي ضد زنگ بكار ميرود .
انواع الكترود و شكل آنها :
نوك الكترودهاي نقطه جوش بايد پروفيل خود را تا آنجا كه ممكن است در شرايط توليد حفظ كند .
پروفيل صحيح باعث عمر طولاني الكترود ميشود .دو شكل استاندارد در موارد عمومي وجود دارد .اين دو نوع عبارتند از :
1 – نوك تخت به شكل يك مخروط وارونه
2 – نوك گنبدي شكل
واضح است كه نوكهاي گنبدي لازم نيست كه دقيقا با سطح كار همراستا قرار گيرند .بنابراين براي جاهاييكه الكترود بر روي سطح منحني در قطعه كار قرار ميگيرند مناسبند و معمولا در جوشكاري آلومينيوم بكار ميروند .نوع نوك تخت  در موارديكه بتواند با قطعه كار همراستا گردد ترجيح داده ميشود .زيرا ماشينكاري و شكل دادن و بازرسي آن در ضمن بكارگيري آسان است .پروفيلهاي الكترود در شكل زير نشان داده شده است
معمولا الكترود را بصورت يك ميله استوانه اي شكل با قطر مورد نظر نميسازند بلكه آنرا بزرگتر ساخته و نوك آن را با زاويه 30 درجه بصورت مخروطي مي تراشند .
افزايش مساحت نوك الكترود در اثر فشار وارده باعث كاهش فشار الكترود و دانسيته جريان مي گردد كه هر دو از اهميت حياتي برخوردار هستند .پهن شدن الكترود را ميتوان با استفاده از سختترين ماده مناسب و بكارگيري ضربه كوتاه و يا به بيان ديگر كاهش بارهاي ضربه اي و با خنك كردن مؤثر الكترود در كمترين مقدار خود نگه داشت .پروفيل ساده الكترود نشان داده شده در شكل 6-2 براي بسياري از كاربردها مناسب است اما همواره قابل انتخاب براي جوشكاري در گوشه ها نميباشد .انواع ديگر الكترود براي اينگونه از كاربردها قابل دسترس ميباشند و در موارد بخصوص ميتوان آنها را ساخت تا احتياجات استفاده كننده را مرتفع سازد
روش تعويض نوك الكترودها:
به علت گرما ديدن نوك الكترودها در هنگام جوشكاري و زير فشار بودن اين ناحيه گرما ديده، پس از زدن چند نقطه جوش، قطعه نامبرده تغيير شكل مي دهد. در نتيجه سطح مشترك نوك الكترودها بزرگتر و ناصافتر مي شود. بنابراين پس از حدود 250 بار نقطه جوش زدن، لازم است كه نوك الكترودها تراشيده شود تا شكل اوليه شان بازيابي شود. اين قطعات در اثر تراشيده شدن، كوتاه تر مي شوند. بنابراين لازم است پس از آن كه هر قطعه به اندازه مشخصي رسيد با قطعه نو تعويض شود. اين جايگزيني بسته به شكل قطعه، جنس آن و نيز روش ساخت آن (تراشكاري شده يا آهنگري شده) ممكن است پس از اعمال 1200 يا 2500 نقطه جوش، مورد نياز باشد.
براي تعويض اين قطعه (نوك الكترود) روش هاي گوناگون وجود دارد:
يك روش آن است كه با نصب تجهيزات تمام خود كار، كل فرآيند تعويض قطعه بدون دخالت انسان انجام پذيرد. روش ديگر استفاده از يك ابزار ساده دستي است كه كاربر با اهرم كردن شاخك هاي آن در زير قطعه و در محل شيار موجود مي تواند آن را از جايش درآورد و پس از جازدن قطعه نو به كمك گردي سطح زيرين ابزار، قطعه را درمحل خود محكم كند. روش سوم استفاده از شكل هندسي مخروطي نگهدارنده نوك الكترود است بدين معني كه سطح تماس قطعه نوك الكترود با نگهدارنده آن، سطح جانبي يك مخروط ناقص است. اين ويژگي هندسي باعث مي گردد تا با اعمال چند ضربه آرام در دو سوي قطعه نوك الكترود، اين قطعه به تدريج درموضع خود لق شود تا اين كه به راحتي و با دست از جاي خود بيرون آيد. پس از نصب قطعه نو، با اعمال چند ضربه آرام به سر قطعه، مي‌توان آن را در جاي خود محكم كرد.
زماني كه كارگر متوجه شود كه گان خوب جوش نمي‌زند، شايد يكي از علت‌هاي آن احتياج بهTip dress نوك الكترود باشد. در اين روش نوك الكترود بوسيلهTip dress  براي جوشكاري آماده مي شود البته نحوه Tip dress خيلي مهم مي‌باشد و نياز به مهارت و آموزش دارد.
Tip dress در دو نوع بادي و برقي مي باشد كه در گان ها از نوع برقي آن استفاده مي شود و اين نوع، محدوديت فشاري دارد (با هر فشار و نيرويي نمي توان استفاده كرد) البته در اين نوع Tip dress يك لوله براي باد هم وجود دارد. يكي ديگر از كارهايي كه براي بهتر شدن كيفيت جوش بر روي الكترود انجام مي‌شود سمباده زدن آن مي‌باشد.
تكنيك هاي جوشكاري نقطه اي:             
نكاتي را در عمليات جوشكاري نقطه اي بايد در نظر داشت كه اهم آنها عبارتند از:

الف) تميزي سطوح تماس:
 سطح كار و سطح الكترودها بايد همواره تميز نگهداشته شوند. گرد و غبار روي فلز در اثر ايجاد حوزه مغناطيسي، ضمن كار، به اطراف محل جوش متمركز شده و ممكن است در سطح مشترك دو ورق يا سطح تماس الكترودها و كار قرار گيرند، گرد و غبار و ناخالصي هاي ديگر اولاً باعث بالا بردن مقدار مقاومت تماسي و اتلاف انرژي مي شوند و ثانياً در فصل مشترك دو ورق وارد مذاب شده و خواص دكمه جوش را كاهش مي دهند. تميز كردن نوك الكترودها بايد با كاغذ سمباده ظريف يا پارچه و با دقت شود تا از تلفات نوك الكترود بصورت براده جلوگيري شود.
اگر الكترودها به وسيله سيستم سرد كننده آبگرد خنك مي شوند بايد توجه شود كه آب از الكترود به خارج نفوذ نكند. در مورد فلزاتي كه ايجاد لايه اكسيدي دير گداز مي كنند (نظير آلومينيوم، تيتانيوم) لازم است علاوه بر تميزكردن سطح كار، اكسيدهاي سطحي نيز توسط محلول هاي اسيدي مخصوص حذف شده و بديهي است كه آثار محلول يا اسيد نيز بايد از روي كار كاملاً تميز شود تا از تشديد عمل خوردگي در اين سطوح جلوگيري شود.
ب) تنظيم كردن ماشين و محل جوش بر روي كار:
 ميزان كردن محل جوش بر روي كار توسط جوشكار ي

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 12:50 |
در اين مقاله، سعي شده است تعريفي كلي از فرايند جوشكاري انفجاري، همراه با برخي عوامل موثر در اين روش، ارائه شود. البته از آنجا كه حل تحليلي فرايند جوشكاري انفجاري، به متغيرهاي بسياري از جمله جنس صفحات، فاصله صفحات، زاويه صفحات نسبت به يكديگر، نوع مواد منفجره، سرعت انفجار و بسياري عوامل ديگر بستگي دارد، فقط به بررسي مكانيزم روش و برخي راه‌حل‌هاي تجربي مطرح در اين زمينه، خواهيم پرداخت. همچنين، شبيه‌سازي موج‌هاي فصل مشترك قطعات، خصوصيات مواد منفجره و برخي كاربردهاي متداول جوشكاري انفجاري را بررسي خواهيم كرد.
جوشكاري را مي‌توان فرايند اتصال دو يا چند جسم (اغلب فلزي) توسط متمركزكردن نيرو براي يكپارچه كردن جسم ناميد. شايد اولين عمل اتصال فلزات در زندگي انسان، لحيم‌كاري بوده كه معمولاً از يك فلز واسطه براي اتصال دو فلز استفاده مي‌شده است. فرايندهاي اوليه جوشكاري نظير جوشكاري به روش آهنگري يا پرس‌كاري سرد كه حدود 4هزارسال پيش توسط انسان مورداستفاده قرار مي‌گرفت، فرايندهاي جوشكاري در فاز جامد بودند. در قرن حاضر، روش‌هاي ديگري نظير جوشكاري اصطكاكي، جوشكاري پاششي و جوشكاري اولتراسونيك كه همگي در فاز جامد صورت مي‌گيرد، ابداع شده است. جديدترين فرايند جوشكاري در فاز جامد، جوشكاري انفجاري است. چگونگي جوشكاري انفجاري، به عوامل متعددي نظير مكانيزم عمل، نوع مواد منفجره، نوع فلزات كه مي‌بايستي جوش داده شوند و بسياري عوامل ديگر بستگي دارد، كه بررسي تحليلي آن را مشكل مي‌سازد. مثلاً، مشكلاتي كه بر اثر انعكاس امواج صوتي ناشي از انفجار در صفحات به وجود مي‌آيد، غالباً رضايت‌بخش نيستند، اما چون حجم بسيار زيادي از جوشكاري‌هاي صنعتي از پوشش صفحات بزرگ تا فرم‌دهي صفحات مركب براي استفاده در ساختمان مخازن تحت فشار و مبدل‌هاي حرارتي توسط اين روش به نحو بهتري صورت مي‌گيرد، اثرات نامطلوب گفته شده، تحت‌الشعاع قرار گرفته و كاربرد اين روش افزايش يافته است.
تاريخچه و سير پيشرفت جوشكاري انفجاري
گرچه جوشكاري انفجاري در قرن حاضر روشي شناخته شده است، اما روش‌هاي متداول جوشكاري كه هم‌اكنون براي اتصال قطعات مختلف به كار مي‌روند، از سه هزار سال پيش از ميلاد شناخته شده بودند. تا قرن نوزدهم تنها روش اتصال قطعات به يكديگر، روش فورجينگ (آهنگري) بود تا اينكه با پيدايش باطري‌هاي الكتريكي، ژنراتورها و استفاده از اكسيژن و استيلن، فرايند جوشكاري به روش ذوبي اختراع شد و تاكنون با ابداع روش‌هاي نوين جوشكاري پيشرفت‌هاي زيادي در اين زمينه صورت گرفته است كه از آن جمله مي‌توان به جوشكاري قوسي بافلاكس محافظ، جوشكاري با پرتو الكترون‌ها و جوشكاري با ليزر اشاره كرد.
جوشكاري انفجاري بعد از جنگ جهاني اول موردتوجه قرار گرفت. در طول اين جنگ، مشاهده شد تكه‌هايي كه از متلاشي‌شدن پوشش فلزي گلوله‌هاي توپ يا بمب، با سرعت خيلي زياد رها مي‌شدند، در تيرهاي فولادي و ديگر سطوح فلزي فرو مي‌رفتند، اما در آن زمان هيچ برخورد علمي با اين موضوع نشد. اولين كسي كه جوشكاري تحت سرعت بالاي برخورد را مورد توجه قرارداد «كارل» بود. او در آزمايش‌هاي خود، دو نيمه برنج سخت كه توسط مواد منفجره و تحت سرعت بالا به يكديگر برخورد كرده بودند را مورد بررسي قرارداد و متوجه شد كه اين اتصال بر اثر ذوب به وجود نيامده است بلكه توسط مكانيزم جوش در فاز جامد تشكيل شده است و عامل اتصال دو قطعه، ايجاد موج در سطح مشترك آنها بوده است.
مكانيزم جوشكاري انفجاري
جوش انفجاري، تحت ضربه‌اي مايل و با سرعت بالا انجام مي‌گيرد. به اين ترتيب كه انفجار باعث مي‌شود تا يك موج ضربه‌اي مايل در فصل مشترك قطعات ايجاد شود. همين امر موجب مي‌شود فلز جامد به صورت سيال رفتار كند. بر اثر همين ضربه، قشر جهنده‌اي از ذرات فلز با سرعت زياد در سطح دو فلز تشكل مي‌شود كه به آن جت فلز گويند و باعث تميزشدن سطح دو صفحه از اكسيد و مواد خارجي شده و بر اثر فشار حاصل از انفجار، عمل اتصال انجام مي‌پذيرد.
فرم كلي يك جوش انفجاري در شكل (1) نشان داده شده است. در اين شكل، صفحه بالايي موسوم به «صفحه پرنده» است كه با زاويه ? نسبت به صفحه زيرين موسوم به «صفحه ساكن» قرار داشته و صفحه ساكن نيز روي يك تكيه‌گاه به نام سندان قرار دارد. سطوح فوقاني صفحه پرنده، توسط يك لايه ضربه‌گير محافظت مي‌شود و اين قشر ضربه‌گير مي‌تواند از لاستيك پلي‌تن يا مقوا و يا حتي يك قشر ضخيم رنگ باشد. يك لايه از مواد منفجره به صورت ورقه‌اي و يا به شكل پودري، بر روي قشر محافظ قرار مي‌گيرد.
فشار زياد برخورد دوصفحه و امواج حاصل از انفجار، باعث به‌وجود آمدن نيروي زياد مي‌شود، به طوري كه از مقاومت فلز در ناحيه تماس، مي‌توان صرفنظر كرد و ماده را همانند يك سيال درنظر گرفت. بنابراين لازم است با فلز همانند يك سيال رفتار شده و در محاسبات همانند يك سيال عمل شود. اندازه سرعت صفحه پرنده، به نوع و ميزان و همچنين چگالي ماده انفجاري بستگي دارد.
شكل2 زمان كوتاهي پس از انفجار را نشان مي‌دهد. قبل از اينكه موج به انتهاي خرج برسد، جهت سرعت صفحه پرنده پس از انفجار، به سهولت قابل تشخيص نمي‌باشد.
براي انجام جوشكاري انفجاري چند شرط وجود دارد. يكي از آنها اين است كه وقتي صفحات به صورت موازي قرار مي‌گيرند شرايطي به وجود آيد كه هواي توليدشده توسط جت فلز بتواند از ناحيه فصل مشترك قطعات خارج شود. اين جت فلز باعث تميز شدن سطوح دوصفحه فلز از قشر اكسيد و مواد زائد خواهد شد و به صورت پاشش فلزي ظاهر شده و باعث كاهش جرم جزئي مي‌شود.
موج‌هاي فصل مشترك قطعات
براي درك بهتر موج‌هايي كه در فصل مشترك قطعات ايجاد مي‌شود، همچنين تحليل رياضي فرايند فوق، اهميت مشاهده جريان روشن مي‌شود. گرچه جوش با فصل مشترك مستقيم نيز امكان توليد دارد، اما در شرايط جوشكاري، موج‌ها سبب استحكام جوش خواهند شد.
يكي از روش‌هاي مشاهده موج‌هاي فصل مشترك اين است كه تعداد زيادي لايه‌هاي فلزات مختلف را روي هر دو صفحه پرنده و ساكن، توسط آبكاري الكتريكي به وجود آورده و پس از عمل جوشكاري، توسط مشاهده متالورژيكي، موج‌ها را مشاهده كرد.
دومين گروه از مكانيزم‌هاي مشاهده امواج، اين است كه شرايط را كاملاً شبيه‌سازي كرده و همان شرايط را از طريق جريان‌هاي مختلف سيالات مشاهده مي‌كنند. براي اين كار، از جريان سيالاتي كه با سرعت‌هاي مختلف حركت مي‌كنند، استفاده مي‌شود. اين روش مشاهده امواج در شكل (3) مشاهده مي‌شود.
شكل موج‌ها به عدد رينولدز جريان بستگي دارد. براي Re=55 يك جريان كاملاً توسعه يافته خواهيم داشت، اما با افزايش عدد رينولدز، الگوي جريان غيرمنظم و مغشوش مي‌شود همان‌طوري كه از شكل(3) مشخص است در سرعت‌هاي بالاي (VF) وقتي كه فشار برخورد بسيار بالاست، مي‌توان جريان را نيوتني با تقريب خوب فرض كرد.
عدد رينولدز براي صفحاتي كه از يك جنس باشند، به صورت:
و براي حالتي كه صفحات از دو جنس مختلف باشند، به صورت مقابل محاسبه مي‌شود:
كه در آن H سختي فلز و برحسب (N/m2)، VF سرعت صفحه پرنده (m/s) و f چگالي برحسب (kg/m3) است.
همان‌طور كه قبلاً نيز گفتيم، تشكيل جوش انفجاري به سرعت انفجار و در نتيجه سرعت صفحه پرنده بستگي دارد و مي‌بايستي توجه شود كه از حدي نيز بيشتر نباشد و كمتر از سرعت صوت در فلزات مورد جوشكاري (تقريبا km/s4) باشد.
در آزمايشاتي كه صورت گرفته است، مشخص شده كه اگر سرعت انفجار km/s7 باشد، باعث فشار ضرباني بسيار بزرگي مي‌شود كه تاثيرات قابل توجهي در مقاومت كششي قطعات داشته و پديده‌اي به شكل از هم گسيختگي را به وجود مي‌آورد.
برخي كاربردهاي جوشكاري انفجاري
يكي از گسترده‌ترين كاربردهاي جوشكاري انفجاري، روكش‌دهي صفحات مسطح است كه در مورد صفحات بزرگ به دليل برخي مشكلات (دفرمه شدن و پيچيدگي) محدود مي‌شود، به طوري كه روكش‌دهي فلزات تنها توسط غلطك‌كاري يا جوشكاري لايه‌اي امكان‌پذير است.
معمولاً هدف از پوشش‌دهي صفحات با صفحه‌اي از جنس ديگر، نياز به مقاومت در برابر خوردگي، بهبود انتقال حرارت، بالابردن مقاومت يا استحكام قطعه، بهبود خواص الكتريكي و غيره است. معمولاً براي فرايندهاي شيميايي، از پوشش‌هايي گران‌قيمت نظير نيكل، فولاد ضدزنگ، تيتانيم و... استفاده مي‌شود. مثلاً، اگر بخواهيم از فولاد ضدزنگ در مخازن استفاده كنيم و مخزن را يكپارچه بسازيم، هزينه زيادي صرف كرده‌ايم. در صورتي كه ساخت مخزن توسط لايه‌اي نازك از اين فولاد به صورت پوششي روي فولاد معمولي و توسط جوشكاري انفجاري، هزينه را بسيار پايين مي‌آورد.
مزاياي جوشكاري انفجاري را مي‌توان به صورت زير فهرست كرد:
  1. ساخت مخازن از 2 لايه تا چند لايه
  2. اتصال فلزات غيرهمجنس، مثلاً فولاد و آلومينيم، در صنايع كشتي‌سازي نتايج خوبي را ارائه كرده است.
  3. جوشكاري فلزات با درجات ذوب متفاوت كه نمي‌توان توسط جوشكاري ذوبي آنها را به هم جوش داد.
  4. كاهش هزينه‌هاي اتصال قطعات، به ويژه قطعات بزرگ.
گفتيم كه يكي از گسترده‌ترين كاربردهاي جوشكاري انفجاري در روكش‌دهي صفحات مسطح است، اما كاربردهاي بسيار ديگري نيز مي‌توان براي آن درنظر گرفت كه برخي از آنها عبارتند از:
  1. روكش‌دهي صفحات مسطح
  2. جوشكاري سطوح استوانه‌اي
الف- جوشكاري داخلي استوانه‌هاي هم مركز
ب- روكش‌دهي داخلي و خارجي استوانه‌ها
پ- روكش‌دهي نازك‌ها
ت- جوشكاري لوله به صفحه
ث- جوشكاري سربه‌سر لوله به لوله
3. جوشكاري خطي لب به لب صفحات مسطح
4. جوشكاري مقاطع توخالي (رادياتورها)
5. روكش‌دهي سيم‌ها و مفتول‌ها
1.High Energy rate forming. Pearson 1961.
2. Explosive welding and it's Application's. oxford.
3. welding journal. 1993.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 12:47 |


معمولاً سه حالت ماده، يعني جامد، مايع و گاز را در نظر مي‌گيرند، ولي حالت چهارمي از ماده وجود دارد که پلاسما ناميده مي‌شود. براي ماده شناخته شده خيلي معروف يعني آب، سه حالت يخ، آب و گاز (بخار) وجود دارد که اگر به آن انرژي گرمايي اعمال شود، يخ از حالت جامد به مايع تبديل شده و اگر انرژي گرمايي بيشتري اعمال شود، تبديل به حالت گاز مي‏شود. زماني که انرژي گرمايي قابل توجهي به گاز وارد شود، گاز به پلاسما تبديل مي‌شود که چهارمين حالت ماده است.
اگر انرژي گرمايي بسيار زيادي به آب وارد شود، به بخار تبديل مي‌شود که شامل دو گاز اکسيژن و هيدروژن خواهد بود. اگر انرژي بيشتري اعمال شود، ذاتاً خصوصيات دمايي و الکتريکي بخار تغيير خواهد کرد که به اين فرايند، يونيزاسيون گفته مي‌شود و در آن، الکترون و يون‌هاي آزاد در ميان اتم‌هاي گاز ايجاد مي‌شود. زماني که اين اتفاق مي‌افتد، گازي که تبديل به پلاسما شده، رساناي الکتريسيته خواهد شد زيرا الکترون‌هاي آزاد، براي انتقال جريان برق در دسترس خواهند بود. اصول رسانايي فلزات، در مورد رسانايي پلاسما نيز وجود خواهند داشت. مثلاً هر گاه شدت جرياني که از يک مقطع عبور مي‌کند کاهش يابد. مقاومت افزايش خواهد يافت. براي رسيدن به ولتاژ بالاتر، مي‌بايستي همين مقدار الکترون از مقطع عرضي عبور کند و دماي فلز افزايش يابد. براي توليد گاز به همين مقدار پلاسما نياز است. اگر مقطع عرضي کاهش يابد گاز پلاسماي داغ‌تري به‌دست خواهد آمد.
برشکاري پلاسما[2]
برشکاري با قوس پلاسما از حدود 45 سال پيش توسعه يافته و اصولاً براي برشکاري فولادهاي زنگ نزن و آلومينيم به کار برده مي‌شد زيرا از لحاظ اقتصادي توجيه چنداني براي برشکاري فولادهاي معمولي نداشت.در اين زمينه سه محدوديت وجوددارد که عبارتند از:
1. کيفيت سطح برش ايجاد شده نسبتاً پايين بود
2. قابليت اطمينان تجهيزات
3. ناتواني ماشين‌هاي برش قديمي که سرعت کمي در برشکاري دستي داشتند
به دليل محدوديت‌هاي فوق، برش پلاسما با رشدي سريع مواجه نشد تا اين که روش برش پلاسما توسط تزريق آب[3] در 1970 اختراع شد و رشد چشمگيري پيدا کرد. اين فرايند نسبتاً جديد با فرايندهاي معمولي متفاوت بود. در اين فرايند، آب اطراف قوس الکتريکي برشکاري پلاسماي خشک[4]، تزريق مي‌شد که نتيجه اصلي آن بهبود چشمگير کيفيت سطوح برش روي همه فلزات حتي فولادهاي معمولي بود. امروزه به‌خاطر پيشرفت‌هاي روي طراحي تجهيزات و بهبود در کيفيت برش، تقاضاهاي بي سابقه قبلي نظير مشعل چندتايي برش فولاد معمولي، فراگير شده است.
شکل 1، فرايند برشکاري پلاسما را نشان مي‌دهد. قاعده اصلي آن است که قوس شکل گرفته بين الکترود و قطعه کار توسط سوراخ دقيق کوچکي منقبض مي‌شود که خود باعث افزايش سرعت و دماي پلاسماي خارج شده از نازل مسي مي‌شود. دماي پلاسما خارج شده بيشتر از 20 هزار درجه سلسيوس و سرعت آن تقريباً به اندازه سرعت صوت است.
شكل1: فرايند برشكاري پلاسما
هنگام برشکاري، شدت جارش گاز پلاسما افزايش مي‌يابد به‌طوري که جت پلاسما از ميان قطعه کار عبور کرده و مواد ذوب شده حاصل از برشکاري را جابه‌جا کرده و به خارج منتقل مي‌سازد.
فرايند برشکاري پلاسما فرايندي آلترناتيو براي فرايند برشکاري توسط اکسيژن [5] تلقي مي‌شود. اين فرايند از اين جهت با برش اکسيژن متفاوت است که در برش پلاسما، استفاده از قوس باعث ذوب فلز مي‌شود، اما در برش توسط اکسيژن، اکسيژن فلز را اکسيد کرده و حرارت حاصل از فرايند گرمازا، باعث ذوب فلز مي‌شود. بنابراين، برخلاف برش توسط اکسيژن، برشکاري پلاسما براي فلزاتي مانند فولاد زنگ نزن، آلومينيم، چدن و آلياژهاي غيرآهني به کار مي‌رود.
انقباض قوس الکتريکي[6]
در جوشکاري آرگون[7]، خصوصيات قوس الکتريکي که از ميان يک نازل مسي که توسط آب خنک مي‌شود و بين يک الکترود (کاتد) و قطعه کار (آند) قرار دارد، به شدت تغيير مي‌کند. به جاي پخش شدن قوس، نازل قوس را داخل مقطع عرضي کوچکي منقبض مي‌کند. اين عمل، مقاومت گرمايي قوس را بشدت افزايش مي‌دهد به‌طوري که دما و ولتاژ قوس افزايش مي‌يابد. همان‌طور که در شکل 2 مشاهده مي‌شود، قوس الکتريکي با سرعت بسيار زياد و به‌طور کاملاً موازي که به صورت جت پلاسماي بسيار داغ بود، از نازل خارج مي‌شود.
شكل2: پروفيل دماي پلاسما و TIG
در هر دو صورت فوق، هر دو ديسشارژ با گاز آرگون بوده و ولتاژ يکسان مي‌باشد و شدت جريان AM200 اعمال شده است. تنها تفاوت آن است که در TIG جت پلاسما به آرامي توسط نازل به قطر 16/3 اينچ منقبض شده است و پلاسماي داغ‌تري از قوس متناظر آن توليد مي‌کند.
انواع جت پلاسما
هنگامي که منبع تغذيه بين الکترود و قطعه کار قرار مي‌گيرد، جت پلاسما به صورت انتقال‌يافته[8] مي‌تواند عمل کندو هنگامي که منبع تغذيه بين الکترود و نازل قرار گيرد جت پلاسما به صورت غيرانتقال‌يافته [9] عمل مي‌کند. دو حالت فوق در شكل3 نشان داده شده است.
شكل3: انواع جت پلاسما
گرچه در هر دو حالت، يک جريان پلاسماي داغ از نازل خارج شده اما حالت انتقال‌يافته هميشه براي فرايند برشکاري به کار مي‌رود، زيرا زماني که قوس در تماس الکتريکي با قطعه کار قرار مي‌گيرد، گرماي قابل استفاده وارد شده به طور موثرتري به کار برده مي‌شود. خصوصيات جت پلاسما مي‌تواند به شدت توسط تغيير نوع گاز، نرخ جارش گاز، شدت جريان قوس و اندازه قطر نازل تغيير يابد. مثلاً، اگر از نرخ پايين جارش گاز استفاده شود، جت پلاسما منبع گرماي متمرکز بسيار بالايي خواهد داشت که براي جوشکاري ايده‌آل است. اگر نرخ جارش گاز به حد کافي بالا باشد، جت پلاسما از قطعه کار عبور کرده و آن را خواهد بريد. در اين حالت، سرعت جت پلاسما براي دور کردن مواد مذاب ايجاد شده در حد کافي بالا خواهد بود. در فرايند برشکاري، دماي قوس پلاسما بيشتر از آنچه که در شکل 2 ارائه شده است، مي‌باشد زيرا جارش بالاي گاز، لايه مرزي نسبتاً خنکي از گاز يونيزه، داخل سوراخ نازل را فرم مي‌دهد و باعث انقباض بيشتر قوس پلاسما مي‌شود. ضخامت اين لايه مرزي مي‌تواند توسط حرکت چرخشي گاز برش، افزايش بيشتري يابد. عمل چرخش، سرما را بيرون رانده و گاز يونيزه را به صورت شعاعي بيرون مي‌راند و لايه مرزي ضخيم‌تري ايجاد مي‌کند. در اکثر مشعل‌هاي برشکاري پلاسما، از مکانيزم حرکت چرخشي گاز استفاده مي‌شود تا حداکثر انقباض قوس ايجاد گردد.
منبع قدرت[10]
خصوصيات قوس الکتريکي يک دستگاه، بستگي زيادي به منحني ولتاژ و آمپراژ آن دارد. منبع قدرت موردنياز در فرايند پلاسما، بايستي از نوع ولت- آمپر سراشيبي تند[11] بوده و ولتاژ بالايي داشته باشد. گرچه ولتاژ موردنياز هنگام فرايند برشکاري بين 50 تا 60 ولت است، ولي ولتاژ مدار باز براي شروع به ايجاد قوس بايستي بيشتر از vDC400 باشد. در اکثر کاترهاي امروزي، يک قوس راهنما داخل بدنه مشعل بين الکترود و نازل باعث يونيزه شدن گاز شده و براي اولين بار، انتقال پلاسماي اوليه به قوس را ايجاد مي‌کنند. چون اين قوس بايد به داخل قطعه کار منتقل شود، «قوس انتقال‌يافته» ناميده مي‌شود. در روش‌هاي ديگر، ايجاد قوس توسط لمس نوک مشعل با قطعه کار صورت مي‌گيرد که باعث ايجاد جرقه مي‌شود. براي اين کار استفاده از مدار فرکانس بالا لازم است. از آنجا که از اکثر انرژي قوس (تقريباً دوسوم) براي برشکاري استفاده مي‌شود، مي‌بايستي الکترود به قطب منفي و قطعه کار به قطب مثبت متصل شود.
ترکيب گازها[12]
در سيستم‌هاي پلاسماي معمولي از الکترود تنگستني، گاز پلاسماي خنثي که مي‌تواند آرگون يا آرگون-هيدروژن يا نيتروژن باشد، استفاده مي‌شود. در فرايندهاي گوناگون، مي‌توان از گازهاي اکسيدکننده مانند هوا يا اکسيژن نيز استفاده کرد. در اين حالت، الکترود مي‌بايستي از جنس مس يا «هف نيوم» باشد. در ضمن، مقدار فلوي جريان گاز پلاسما مهم بوده و مي‌بايستي برحسب سطح شدت جريان و قطر سوراخ نازل تنظيم شود. اگر مقدار فلوي جريان گاز براي سطح شدت جريان کم باشد يا سطح شدت جريان براي قطر سوراخ نازل بسيار زياد باشد، قوس شکسته شده و به دو قوس تبديل مي‌شود که يکي بين الکترود و نازل و ديگري نازل و قطعه کار ايجاد مي‌شود. اين حالت به پديده «دوقوسي»[13] معروف بوده و معمولاً اثر فاجعه انگيز آن به شکل ذوب نازل بروز مي‌کند.
برشکاري معمولي توسط قوس پلاسما[14]
از جت پلاسمايي که توسط تکنيک‌هاي انقباض قوس خشک معمولي توليد مي‌شود، مي‌توان براي برش هر فلزي با سرعت برشي نسبتاً بالا استفاده کرد. همچنين رنج ضخامت‌هايي که مي‌توان عمليات برشکاري را در مورد آنها انجام داد، از 8/1 اينچ شروع شده و حداکثر آن به ظرفيت شدت جريان مشعل و خصوصيات فيزيکي فلز بستگي خواهد داشت. مثلاً، يک مشعل با مکانيزم خوب و ظرفيت شدت جريان هزار Amp مي‌تواند فولاد زنگ نزن را تا ضخامت 5 اينچ و آلومينيم را تا ضخامت 6 اينچ، برش دهد. در اکثر کاربردهاي صنعتي، ضخامت ورق‌ها به ندرت از 1 تا 2/1 اينچ تجاوز مي‌کند. در اين رنج، پلاسماهاي معمولي سطوح برش را شيب‌دار و لبه فوقاني را گرد مي‌کنند.
کيفيت برش[15]
همان‌طور که در شکل 4 مشاهده مي‌شود، کيفيت لبه‌هاي برش پلاسما، مشابه فرايند برشکاري توسط اکسيژن است. با توجه به اينکه عمليات برشکاري در فرايند پلاسما توسط ذوب صورت مي‌گيرد، يکي از مشخصه‌هاي ويژه آن، توزيع گرماي غيرمتعادل بر سطوح برش است. لذا مقدار بيشتري از ذوب به سمت فوقاني سطح فلز رفته و باعث مي‌شود لبه‌هاي بالايي گرد شده و سطوح برش شيب دار شوند. از ديگر خصوصيات اين نوع برش، ايجاد تفاله [16] زيرسطح تحتاني فلز است که دليل آن جارش مذاب مي‌باشد.
شكل4: كيفيت لبه‌هاي برش پلاسما
همانطور که در شکل 5 مشاهده مي‌شود، اگر گرماي اعمال شده به بالاي سطح برش، بيشتر از گرماي اعمال شده به پايين آن باشد، زاويه برش مثبت ايجاد خواهد شد. براي کاهش اين زاويه مي‌بايستي تا حد امکان قوس پلاسما را منقبض کرد. افزايش انقباض پلاسما باعث مي‌شود پروفيل دماي جت پلاسما يکنواخت‌تر شده و متناظر با آن، سطح برش قائمه شود. متاسفانه نازل‌هاي معمولي به برقراري ايجاد دو قوس (يک قوس بين الکترود و نازل و ديگري بين نازل و قطعه کار) دارند که باعث صدمه زدن به الکترود و نازل مي‌شود.
در صورت استفاده از دستگاه‌هاي برشکاري پلاسماي معمولي براي برشکاري انواع مختلف فلزات با ضخامت‌هاي مختلف، مشکل ايجاد خواهد شد. مثلاً، اگر از اين دستگاه‌ها براي برش فولادهاي زنگ نزن، فولادهاي معمولي و يا آلومينيم استفاده شود، مي‌بايستي سه نوع گاز متفاوت موردنياز براي برش اين فلزات، روي دسته مشعل نصب شود تا حالت بهينه کيفيت برش تحقق يابد. اين تجهيزات نه تنها فرايند را پيچيده مي‌کند بلکه به ذخيره گازهاي گران‌قيمت نظير آرگون و هيدروژن نياز دارند. به همين دليل، از چنين دستگاه‌هايي صرفاً براي کاربردهاي خاص استفاده مي‌شود.
شكل5: توزيع حرارت روي سطح برش
فرايندهاي گوناگون برش پلاسما
اصولاً فرايندهاي گوناگوني براي بهبود کيفيت برش، پايداري قوس، کاهش سروصدا، دود، بخار و افزايش سرعت برش طراحي شده‌اند که در ادامه به‌طور مختصر به هر يک از آنها اشاره مي‌شود.
1. جارش گاز دوتايي[17]
اين تکنيک در 1965 توسعه يافته و به طور کلي مشابه فرايندهاي معمولي پلاسما عمل مي‌کند، اما تغييري بسيار کوچک در آن ايجاد شده است. همان‌طور که در شکل 6 مشاهده مي‌شود. گاز ثانويه پوششي، اطراف نازل را مي‌پوشاند. اثرات سودمند اين گاز ثانويه آن است که باعث انقباض قوس و کاهش تفاله‌ها زيرسطح برش مي‌شود. در اين حالت، گاز پلاسما معمولاً آرگون، آرگون- هيدروژن يا نيتروژن است و گاز ثانويه با توجه به نوع فلز موردنظر تعيين مي‌شود. براي برش فولادها، از هوا، اکسيژن و يا نيتروژن به عنوان گاز ثانويه استفاده مي‌شود. براي برش فولاد زنگ نزن و آلومينيم، از نيتروژن، آرگون- هيدروژن و دي اکسيدکربن استفاده مي‌شود.
شكل6: فرايند برش توسط جارش دو نوع گاز
در صورتي که از هوا به عنوان گاز ثانويه استفاده شود، اکسيژن داخل هوا، انرژي اضافي را براي واکنش‌هاي گرمازا با فولاد ذوب شده ايجاد مي‌کند که اين انرژي اضافي، سرعت برش را تا حدود 25 درصد افزايش مي‌دهد. اگرچه از اين فرايند براي برش فولاد زنگ نزن و آلومينيم استفاده مي‌شود، اما سطح برش بسيار اکسيد شده و براي اکثر کاربردها قابل قبول نخواهد بود. در اين روش بايد از الکترودهاي «زيرکونيم» و «هف نيوم» استفاده کرد. زيرا در صورتي که گاز ثانويه اکسيژن باشد، باعث فرسايش الکترود تنگستني خواهد شد. در صورتي که از الکترودهاي تنگستني استفاده مي‌شود، دوره سرويس مي‌بايستي کوتاه‌تر از حالت روش پلاسماي معمولي باشد. در اين روش، سرعت برشي براي برش فولادها کمي بهتر از روش معمول است، اما کيفيت سطح برش پايين‌تر است. سرعت برشي و کيفيت براي برش فولاد زنگ نزن و آلومينيم تقريباً مشابه روش‌هاي معمولي است.
همان‌طورکه در شکل 7 مشاهده مي‌شود، در اين روش نازل داخل يک محفظه سراميکي قرار دارد که گاز پوششي (ثانويه) از آن عبور کرده و به اين وسيله، نازل را از پديده دو قوسي محافظت مي‌کند. در صورتي که گاز پوششي وجود نداشته باشد، بار شعاعي بسيار داغي توسط جت پلاسما ايجاد شده و باعث صدمه ديدن محفظه سراميکي مي‌شود. مزاياي اين روش در مقايسه با روش‌هاي معمولي، عبارتند از:
1. کاهش ريسک پديده دوقوسي
2. سرعت بيشتر برش
3. کاهش گردي در لبه برش
شكل7: استفاده از محفظه سراميكي در برشكاري پلاسما
2. برش پلاسما توسط تزريق آب[18]
در اين روش، از نيتروژن به عنوان گاز پلاسما استفاده مي‌شود. همان‌طور که در شکل 8 مشاهده مي‌شود، براي ايجاد انقباض بيشتر، آب به صورت شعاعي و يکنواخت، به داخل قوس تزريق مي‌شود تا کيفيت سطح برش افزايش يابد. اصابت شعاعي آب به اطراف قوس باعث انقباض بيشتر قوس نسبت به حالتي است که از ابزار معمولي براي انقباض قوس استفاده مي‌شود. همچنين، دما به طور نسبتاً زياد افزايش مي‌يابد و به حدود 30 هزار درجه سلسيوس مي‌رسد.
راه ديگر انقباض قوس توسط آب، ايجاد حلقه‌هاي چرخشي آب در اطراف قوس است. اين تکنيک بخوبي شيوه تزريق شعاعي نيست. زيرا در اين حالت، مقدار انقباض قوس توسط سرعت‌هاي چرخشي زياد موردنياز براي توليد حلقه ثابت آب، محدود مي‌شود. نيروي گريز از مرکز ايجاد شده توسط سرعت‌هاي چرخشي بالا باعث پهن شدن فيلم آب (برخلاف سوراخ داخلي نازل) مي‌شود.
شكل8: برش پلاسما توسط تزريق آب
همان‌طور که در شکل 9 ملاحظه مي‌شود، گرچه نقاطي از قوس با آب برخورد مي‌کند، اما به دليل دماي بسيار بالايي که توليد خواهد شد، کمتر از 10 درصد از آب تبخير مي‌شود و 90 درصد بقيه به شکل مخروطي از نازل خارج شده و سطح فوقاني قطعه کار را خنک مي‌کند. اين خنك‌كاري اضافي، از اکسيد شدن روي سطح برش جلوگيري مي‌کند.
شكل9: انقباض قوس پلاسما توسط ايجاد حلقه‌هاي چرخشي آب
علت تبخير مقدار کمي از آب در قوس اين است که لايه مرزي ايزوله شده‌اي از بخار، بين پلاسما و آب تزريق شده شکل مي‌گيرد. نام اين لايه مرزي بخار، «Linden frost Layer» بوده و به طور کلي شبيه ريزش آب از سطح خارجي اطراف کتري داغ به جاي تبخير فوري آن است. عمر نازل در اين فرايند، بسيار افزايش مي‌يابد زيرا اين لايه مرزي بخار، نازل را از گرماي شديد قوس محافظت مي‌کند و آب، نازل را در نقاط حداکثر انقباض قوس، خنک مي‌کند. قسمت پايين‌تر نازل را مي‌توان سراميکي انتخاب کرد. در اين حالت، پديده دو قوسي (عامل اصلي تخريب نازل) واقعاً حذف خواهد شد.
برخلاف فرايندهاي معمولي، بهينه‌ترين حالت کيفيت برش تمامي فلزات، زماني است که از نيتروژن به عنوان گاز پلاسما استفاده شود، زيرا قابليت نيتروژن براي انتقال گرما از قوس به قطعه کار، بالاست و از لحاظ فيزيکي نيز ايده‌آل به نظر مي‌رسد. نيتروژن باعث مي‌شود تا فرايندها اقتصادي‌تر و آسان‌تر شوند. همان‌طور که در شکل 10 مشاهده مي‌شود، يکي از ويژگي‌هاي اين گونه برش‌ها، آن است که وقتي براي برش مستقيماً نگاه کنيم، سمت راست شکاف قائمه بوده و سمت چپ کمي شيب دار خواهد بود. اين حالت به دليل تزريق آب نيست بلکه نتيجه جهت چرخش گاز برش بوده و ناشي از اين نکته است که بيشتر انرژي قوس، روي سمت راست شکاف توسعه يافته است. اختلاف در زاويه برش به‌خاطر شيب زياد و گردي بالاي سطح برش، چندان بديهي نيست. لذا در برشکاري قطعات کاربردي، جهت حرکت مي‌بايستي به گونه‌اي انتخاب شود که لبه برش قطعات قائمه باشد.
شكل10: جهت سطوح شيبدار در برش پلاسما
زاويه برش طرف با کيفيت بالا، معمولاً 2 درجه با زاويه قائمه اختلاف داشته و به ندرت نياز به ماشين‌كاري براي عمليات نهايي دارد. براي برش ورق‌هاي ضخيم مي‌توان از 65 درصد آرگون و 35 درصد هيدروژن به جاي نيتروژن استفاده کرد، زيرا عمق نفوذ جت پلاسما را بيشتر مي‌کند. اين حالت براي برش فولادهاي ضخيم و ساخت مجراهاي هسته‌اي، کاربرد دارد.
مزاياي اين روش در مقايسه با روش‌هاي معمولي عبارتند از:
1. بهبود کيفيت سطح (سطح تميز و نرم)
2. گونيا بودن سطح برش
3. افزايش سرعت برش
4. کاهش ريسک پديده دو قوسي و در نتيجه کاهش در فرسايش نازل
5. عدم ايجاد تفاله زير سطح برش در اکثر قطعات فولادي
6. قابليت استفاده از يک نوع گاز (نيتروژن) براي برش تمامي فلزات
3. برش پلاسما توسط پوشش آبي[19]
همان‌طور که در شکل 11 مشاهده مي‌شود، اين فرايند مشابه برش گاز دوتايي بوده و تنها در اين فرايند از آب به عنوان پوشش قوس استفاده مي‌شود. ظاهر سطوح برش و عمر نازل به‌خاطر اثر خنک‌کنندگي آب بهبود يافته است، اما قائم بودن سطح برش، سرعت برش و کاهش تفاله‌هاي زيرسطح برش، به‌طوري قابل ملاحظه افزايش نيافته‌اند زيرا آب نمي‌تواند باعث انقباض اضافي قوس شود. اين فرايند را مي‌توان حتي زماني که قطعه کار تا حدود 50 تا 75 ميلي متر زير سطح آب باشد نيز به کار برد. آب در مقايسه با پلاسماي معمولي، به عنوان مانعي براي تحقق مزاياي ذيل عمل مي‌کند:
1. کاهش گاز و دود
2. کاهش سروصدا
3. بهبود عمر نازل
مثلاً، سطوح صدا در سطوح جريان بالا در پلاسماي معمولي dB115 است، اما در اين روش تا dB96 و در برش زير آب تا dB85-52 کاهش يافته است.
شكل11: برش پلاسما توسط پوشش آبي
4. پلاسماي هوايي[20]
همان‌طور که در شکل 12 ملاحظه مي‌شود، در اين فرايند، هوا مي‌تواند با گازهاي خنثي پلاسما مانند آرگون و نيتروژن جايگزين شود، اما مي‌بايستي الکترود مورداستفاده «هف نيوم» يا «زيرکونيم» بوده و روي نازل مسي سوار شده باشد. همچنين هوا به عنوان جايگزين آب براي خنك‌كاري مشعل به کار مي‌رود. مزيت مشعل پلاسماي هوايي آن است که در آن، از هواي ارزان‌قيمت به جاي گازهاي گران‌قيمت استفاده مي‌شود. به اين نکته مي‌بايستي توجه داشت که گرچه الکترود و نازل فقط قابل مصرف مي‌باشند، ولي نوک الکترود «هف نيوم» در مقايسه با الکترود تنگستني، گران‌قيمت است.
شكل12: پلاسماي هوايي
5. پلاسماي با تلرانس بالا[21]
براي بهبود کيفيت سطح و رقابت با کيفيت برش بالاتر از برش ليزري، سيستم‌هاي برش پلاسما با تلرانس بالا در دسترس بوده و با پلاسماي بسيار منقبض شده، کار مي‌کنند. شکل 13، پلاسماي با تلرانس بالا را نشان مي‌دهد. تمرکز پلاسما توسط نيروي اکسيژن توليدي براي پيچش، عملي شده است به‌طوري که اکسيژن وارد لوله پلاسما شده و جريان گاز ثانويه از قسمت پايين نازل پلاسما تزريق شده است.
شكل13: پلاسماي با تلرانس بالا
بعضي سيستم‌ها داراي ميدان مغناطيسي جداکننده‌اي هستند که قوس را احاطه مي‌کند. اين ميدان، جت پلاسما را توسط نگهداري چرخش القا شده توسط گاز پيچشي، بالانس مي‌کند. اين روش تکنيکي مکانيزه است که نياز به دقت و تجهيزات سرعت بالا دارد. مزاياي اين روش عبارتند از:
1. افزايش کيفيت برش بين پلاسماهاي معمولي و برش توسط ليزر
2. باريک بودن پهناي شکاف
3. کمترين اعوجاج به علت کوچک بودن منطقه HAZ
عيب عمده اين روش آن است که مي‌تواند قطعات تا حداکثر ضخامت 6 ميلي‌متر را برش دهد و سرعت برشي آن کمتر از فرايندهاي پلاسماي معمولي بوده و تقريباً معادل 60 تا 80 درصد از سرعت برش ليزري است.
6. برش پلاسما توسط تزريق اکسيژن[22]
اين فرايند، مسئله عمر الکترود مربوط به برش هوا توسط استفاده از گاز نيتروژن به عنوان گاز پلاسما و استفاده از گاز اکسيژن عبوري به صورت جريان پايين از سوراخ نازل را حل کرده است. اين فرايند منحصراً براي فولادها به کار برده مي‌شود. در صورت استفاده از 80 درصد نيتروژن و 20 درصد اکسيژن، سرعت برش تا 25 درصد افزايش مي‌يابد. از جمله معايب اين روش، عدم عمود بودن سطح برش، عمر کوتاه نازل و محدوديت همه‌کاره بودن (فقط براي برش فولاد) آن است. گرچه اين فرايند هنوز در بعضي از موقعيت‌ها به کار مي‌رود، اما فرايند تزريق توسط آب تقريباً جايگزين آن شده است. شکل 14 اين فرايند را نشان مي‌دهد.
شكل14: برش پلاسما توسط تزريق اكسيژن
[2].Plasma arc cutting
[3]. Water-injection plasma cutting
[4]. Dry plasma cutting
[5]. Oxy-fuel
[6]. Arc Constriction
[7]. TIG
[8]. Tansferred
[9]. Non- transferred
[10]. Power source
[11]. Drooping
[12]. Gas composition
[13]. Double arcing
[14]. Conventional Plasma Arc Cutting
[15]. Cut quality
[16]. Dross
[17]. Dual Flow Plasma Cutting
[18]. Water-injection Plasma Cutting
[19]. Water Shield Plasma Cutting
[20]. Air Plasma cuttings
[21]. High Tolerance plasma
[22]. Oxygen Injection Plasma C

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 11:11 |
در جوشکاری معمولاً موقعیت جوشکار نزدیک به قوس و توده آلاینده ها تنظیم شده است که از نقطه جوشکاری شده به سمت بالا صعود می کنند. درنتیجه جوشکار مقادیر زیادی از فیوم و گازها را تنفس می نماید. با تغییر این وضعیت و تأمین حفاظهای تنفسی در برابر توده صعود کرده فیوم و گازها، می توان به کاهش خطرات سلامتی جوشکار کمک کرد.
درحین جوشکاری در هوای آزاد، جوشکار بایستی از جهت وزش باد مطلع باشد و موقعیت خودش را بر طبق آن تنظیم کند. به هرحال این صحیح نمی باشد که در هنگام وزش شدید باد جوشکاری قوس گاز فلزی انجام شود، زیرا باد، محافظ را دچار از هم گسیختگی می نماید. طراحی صحیح کلاهخود جوشکاری یا نقاب، بطور قابل ملاحظه ای آلوده کننده های هوا را در منطقه تنفسی جوشکاران کاهش می دهد. کلاهخود یا نقاب بایستی گلو و قسمتهایی از قفسه سینه را بپوشاند.
انتخاب گاز محافظ بر مقدار آلاینده های هوا تأثیر می گذارد. دی اکسید کربن و دیگر گازهای اکسید کننده سبب تشکیل فیوم بیشتری می شوند.
اگر از آرگون و هلیوم به عنوان یک گاز محافظ استفاده شود با افزودن اکسید نیتریک No به آرگون، میزان ازن در حین جوشکاری MAG/MIG و TIG کاهش داده می شود.
این کاهش در نتیجه واکنش سریع در اکسید رخ می دهد. (O2 , NO2) دی اکسید نیتروژن نیز یک گاز خطرناک ( البته نه به خطرناکی ازن ) می باشد. انتخاب پارامترهای جوشکاری نیز برمیزان آلاینده ها تأثیر می گذارد. یک قوس استوار و ثابت که تولید آلودگی نمی کند کمترین مقدار فیوم را سبب می شود. به همین دلیل بایستی در طول جوشکاری MIG/MAG از ناحیه انتقال ساچمه ای پرهیز شود.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 10:33 |
ذرات موجود در فیوم جوشکاری بی نهایت کوچک هستند (معمولاً قطری کوچکتر از 5/0 میکرومتر) در نتیجه آنها می توانند وارد ششها شده و به صورت تاولچه های ریوی ایجاد عارضه کنند. بعضی از مواد که در ششها انباشته می شوند می توانند باعث ایجاد یک سری تغییرات در بدن شوند. در این قسمت بیشتر مواد اصلی که در فیوم جوشکاری یافت می شوند به همراه اثرات و خطراتی که ایجاد می کنند توضیح داده شده اند.
1- باریم Ba
برای باریم حد آستانه ای مشخص نشده است. استنشاق فیوم هایی که حاوی اکسید باریم هستند سبب تحریک قابل ملاحظه بینی و گلو می شود. بعلاوه فیوم اکسید باریم می تواند باعث ایجاد تهوع، استفراغ، اسهال و زخم های معده ای شده و همچنین خطر بیماری قلبی، خستگی عضلانی و انقباض را افزایش بدهد.
2- بریلیوم Be
بریلیوم ماده ای است که هم به شکل فلزی و هم به حالت ترکیب دارای سمیت بالا می باشد (اکسید بریلیوم در فیوم جوشکاری) بریلیوم اصولاً به صورت آلیاژ با مس تولید می شود و سبب عارضه خطرناکی در ششها به نام بریلیوزیس می شود.
3- کادمیوم Cd
کادمیوم ماده ای با سمیت بالا می باشد. اکسید کادمیوم موجود در فیوم جوشکاری در حین جوشکاری صفحات فلزی (فلزی که توسط کادمیوم جهت حفاظت از خوردگی پوشانیده می شود) کادمیوم، تولید می شود. از علائم مسمومیت با کادمیوم می توان اشکال در تنفس، خشکی گلو، سرفه، درد درقفسه صدری و تب دود فلزی را نام برد.
این عوارض معمولاً هنگامی ظاهر می شوند که حداقل یک روز یا بیشتر از مدت تماس بگذرد. فردی که بطور مکرر در معرض تماس با کادمیوم قرار دارد ممکن است از ادم ریوی رنج ببرد و احتمالاً مبتلا به آمفیزم نیز باشد. جگر وکلیه ها نیز می توانند تحت تأثیر فیوم کادمیوم قرار گیرند.
4- کلسیم Ca
کلسیم در فیوم جوشکاری به اشکال اکسیدهای به هم پیوسته (کنژوگه) در جوشکاری قوس فلزی با الکترودهای پایه و در قوس جوشکاری فلوکس – کورد با فلوکس اصلی به عنوان یک فلز پرکننده یافت می شود. در غلظت های بالا، اکسید کلسیم می تواند غشاء موکوس را تحریک کند اما مستقیماً خطری برای سلامتی در طی جوشکاری محسوب نمی شود.
5- کروم Cr
در طول جوشکاری کروم به صورت آلیاژ با فولاد (مانند فولاد ضد زنگ) کرم 3 ظرفیتی و 6 ظرفیتی کاملاً به صورت اکسید تشکیل می شود. در هر دو فرم، کروم باعث تحریک غشاء های موکوس و ایجاد تب دود فلزی شده و همچنین بر جریان تنفس و ششها نیز اثر می گذارد. همچنین کروم شش ظرفیتی به عنوان افزایش دهنده خطر سرطان در نظر گرفته می شود. کروم شش ظرفیتی در طول جوشکاری با الکترودهای پوشش دار تولید می گردد.
6- مس Cu
مس هم به شکل فلزی و هم به صورت فلز پرکننده یافت می شود. استنشاق فیوم های مس می توانند سبب تب دود فلزی شده و عوارضی در ریه ایجاد کند که کوپروزیس نامیده می شود.
7- فلوئورF
ترکیبات فلوئور با فلوریدها اکثراً در طول جوشکاری با الکترودهای پوشش دار تولید می شوند. این ترکیبات همچنین می توانند به حالت به هم پیوسته با جوشکاری قوس فلوکس – کورد تولید شوند. البته اگر فلوکس، فلز پایه باشد، استنشاق فلوریدها می تواند باعث تحریک خفیف کانالهای تنفسی شده و مسمومیت عمومی حاد یا مزمن ایجاد کند. تنها در محلهایی که محصور بوده یا تهویه ناقصی دارند این خطر وجود دارد که مقدار حد آستانه فلوئور از حد استاندارد تجاوز کند.
8- آهن Fe
اکسیدهای آهن در فیوم جوشکاری به حالت کنژوگه تولید می شوند که درتمام جوشکاری های آهن فلزی یافت می شوند. تماس با اکسید آهن بیش از یک مدت زمان خاص می تواند در موارد تماس فردی شخص را دچار عارضه ای به نام سیدروزیس بنماید که در رادیوگرافی اشعه X، شبیه به سیلیکوزیس می باشد، ولی سیدروزیس خطرناک نبوده و خطری برای سلامتی نداشته و در تماسهای کوتاه مدت با اکسید آهن متوقف می شود و عارضه ریوی مانند سیلیکوزیس به حالت پیش رونده ادامه نمی یابد.
9- سرب Pb
سرب به مقدار زیاد در فیوم جوشکاری قوس تولید نمی شود مگر در مواردیکه جوشکاری ویژه ای برای سطوح فلزی پوشش دار انجام می شود. سرب ممکن است در هنگام تجزیه الکترودهای پوشش دار به صورت ترکیب تولید شود. تنفس فیوم های سرب می تواند باعث عوارضی از قبیل سردرد، ضعف و غش، درد در عضلات، انقباض عضلانی، کاهش اشتها و کاهش وزن گردد. در غلظتهای بالا خطر کم خونی و افت حافظه وجود دارد.
10- منیزیوم Mg
منیزیم به عنوان یک عنصر آلیاژی در جوشکاری فولاد و الکترودها تولید می شود. فیوم جوشکاری در این مورد حاوی غلظتهای بالای اکسید منیزیم می باشد که سمی است. علائم مسمومیت با منیزیم عبارتند از تحریک غشاء موکوس، لرز، سفتی عضلات، ضعف و غش و اختلال در ظرفیتهای هوشی، سیستم عصبی و راههای تنفسی نیز می توانند تحت تأثیر واقع شوند. منیزیم می تواند همچنین سبب تب دود فلزی گردد.
11- مولیبدن Mo
تنفس فیوم حاوی مولیبدن می تواند اعضاء تنفسی را تحریک نماید. تماس مداوم و طولانی با مولیبدن می تواند سبب درد در مفاصل و تأثیر بر کبد شود.
12- نیکل Ni
نیکل به طور کلی در هنگام تولید فولاد ضد زنگ ایجاد می شود. اکسید نیکل در فیوم جوشکاری می تواند سبب تب دود فلزی شود. نیکل همچنین از نظر سرطانزایی نیز مورد تردید و شک می باشد.
13- سیلیس Si
برخی از اشکال دی اکسید سیلیس (کوارتز) می توانند سبب سیلیکوزیس شوند. به هر حال مدرکی وجود ندارد دال بر اینکه اشکال دی اکسید سیلیس در فیوم جوشکاری با غلظت خطرناکی تولید می شوند.
14- روی Zn
فیوم اکسید روی در طول جوشکاری صفحات گالوانیزه تولید می شود. آبکاری با روی می تواند سبب ایجاد تب دود فلزی گردد.
رفتاری که گازها در اینجا دارند عوارض سمی و یا خفه کنندگی می باشد. آنها یا در طول جوشکاری تشکیل می شوند و یا عناصر گاز محافظ هستند.
1- منوکسید کربن CO
منوکسید کربن گازی است خطرناک که بی بو و بی رنگ می باشد. منوکسید کربن در اصل در رابطه به جوشکاری در فضای بسته یا فضاهایی که تهویه ناقص دارند، درغلظتهای بالایی که در گازها می تواند وجود داشته باشد تولید می شوند. منوکسید کربن از انتقال اکسیژن در خون جلوگیری می نماید. مسمومیت با منوکسید کربن سبب ایجاد تهوع، سردرد، دردهای قلبی، اشکال در غلظت خون و بالاخره عدم هوشیاری می گردد.
2و3- دی اکسید نیتروژن No2 و اکسید نیتریک No
در غلظتهای بالای ppm15، دی اکسید نیتروژن می تواند باعث تحریک چشم ها شده و سبب آبریزش از آنها گردد. غلظتهای بالاتر می توانند همچنین سبب برونشیت حاد، فیبروز یا ادم ریوی گردند. دو عارضه بعدی می توانند تهدیدی برای سلامتی و ادامه زندگی باشند. اما در اکثر موارد عملکرد در بیماران ریوی با بهبود همراه بوده است. علائم مسمومیت شامل سرفه های سخت، خس خس کردن سینه، بدحالی، تهوع و تنگی نفس می باشد. البته این علائم حتی از 3 تا 30 ساعت پس از تماس نیز ممکن است ظاهر نشوند.
4- ازن O3
ازن گازی سمی و بیرنگ می باشد. ازن بر غشاء موکوس و همچنین بر راههای تنفسی اثر می گذارد. علائم مسمومیت با ازن شامل خارش یا احساس سوختگی در گلو، سرفه، درد قفسه صدری و خس خس سینه می باشد.
5- فسژن Cocl2
درغلظتهای بالای ppm20 فسژن باعث احساس سوختگی دردهان و گلو می شود فسژن همچنین در قفسه صدری تولید درد نموده و ایجاد استفراغ می نماید. استنشاق فسژن می تواند باعث ایجاد ادم ریوی شود.
6- فسفین PH3
فسفین گازی با سمیت بالا می باشد که باعث تحریک چشمها، بینی و پوست می شود. استنشاق این گاز می تواند سبب اسهال، خستگی و سردرد گردد. فسفین می تواند درغلظتهای بالای ppm100کشنده باشد. فسفین همچنین می تواند بر سیستم عصبی و کلیه ها اثر بگذارد.
اندازه گیری و دستگاههای اندازه گیری
درهنگام اندازه گیری انتشار، مقدار معینی از ماده تولید شده در واحد زمان اندازه گیری می شود. جوشکاری آزمایشی معمولاً در بعضی از اتاقکهای ویژه انجام می شود. یک جریان هوای مشخص از درون اتاقک کشیده می شود. فیوم در یک فیلتر جمع آوری شده و توزین می شود. واحد انتشار فیوم اختصاصی می باشد برای مثال g/min بعد از توزین، فیوم جمع آوری شده می تواند از نظر شیمیایی به منظور تعیین ترکیبات آن به خوبی تجزیه شود. غلظتهای گوناگون گازها، به کمک وسایل ویژه اندازه گیری می شوند. میزان انتشار را می توان با جمع غلظتهای گاز و جریان هوا بدست آورد که واحد آن ml/min می باشد.
تأثیر عوامل مختلف بر انتشار
انتشار آلوده کننده های هوا در طول جوشکاری همانند ترکیب آلوده کننده های هوا به تعدادی از عوامل مختلف بستگی دارد که عبارتند از:
1-فلز پایه و فلز پرکننده.
2-پوشش دهنده ها یا آلاینده های روی سطوح ورقه ها.
3-پارامترهای جوشکاری (جریان، ولتاژ، گازمحافظ و فلوی گازمحافظ)
دراینجا اثرات این عوامل با جزئیات بیشتری مورد بحث قرار خواهند گرفت.
هرگونه اقدام به منظور پیشگیری، در صورتیکه به وضعیت کار بهبود ببخشد بجا محسوب می شود. یک جوشکار می تواند از تماس با آلودگی و آلاینده هایی که در طول جوشکاری به طرق مختلف تولید می شوند پرهیز کند. چند مثال در مورد پیشگیریها عبارتند از: تهویه عمومی مناسب، مکش موضعی، اشکال مختلف حفاظهای تنفسی و شرایط مناسب کاری و نیز استفاده از یک گاز محافظ خوب، نوع پیشگیری به کار رفته به اینکه جوشکاری باید در داخل محیطهای سربسته و یا خارج آن انجام بشود و نیز به اندازه قطعه کار و غیره بستگی دارد.
1- تهویه عمومی
برای جوشکاری در محیطهای سربسته، بایستی تهویه عمومی به منظور رقیق کردن آلاینده های هوا به طور مناسبی وجود داشته باشد. میزان قابل قبول تهویه برای فیوم جوشکاری mg/m32می باشد. در کارگاههای بزرگ با سقوف مرتفع و بلند، حرکات طبیعی هوا تهویه عمومی را تأمین می کند که معمولاً کافی می باشد. در موارد دیگر بایستی یک سیستم تهویه اضافی افزوده گردد.
2- مکش موضعی
هرجا که تهویه عمومی ناکافی و نامناسب بنظر می رسد، بایستی به منظور بهبود موقعیت جوشکار مکش موضعی به کار رود، مکش موضعی هر قدر نزدیک به محل جوش باشد تا حد ممکن از انتشار آلاینده ها در میان کارگاه جلوگیری می کند. یکی از مزیتهای مکش موضعی نسبت به تهویه عمومی آن است که به مقدار هوای کمتری نیازمند است. تنها نقص وسائل مکش موضعی این است که مشکل می توانند به طور صحیحی مورد استفاده قرار گیرند بنابراین به منظور کار، بایستی یک دستگاه مکش موضعی نزدیک به قوس تعبیه گردد. در مورد جوشکاریهای عظیم، تهویه بایستی همیشه با کار جوشکاری مطابقت داشته باشد. مکش موضعی برای کارکردن در موارد خرده جوشکاری، که در یک پست کاری ثابت، انجام می شود بیشتر مناسب می باشد در بعضی از تجهیزات جوشکاری دستگاه مکش موضعی که بر تفنگ جوشکاری نصب شده است بر وزن تفنگ می افزاید.
همچنین مکش موضعی در هر وضعیت جوشکاری همیشه کارآیی ندارد، بالاخره مکش موضعی خیلی قوی، نامناسب می باشد چون ممکن است باعث از هم گسیختگی فلوی گاز محافظ گردد. این موضوع در مورد تهویه عمومی نیز صادق می باشد.
حفاظت از سیستم تنفسی
در موارد خاصی بعضی از اشکال حفاظت از سیستم تنفسی می توانند به کار برده شوند. اگر نوع آلاینده مشخص باشد از یک ماسک فیلتردار می توان استفاده کرد. البته فیلتر فقط فیوم را دفع می کند، درحالیکه گازها از میان آن عبور می کنند.
یک کلاهخود جوشکاری با هوارسان خارجی آلاینده ها را در منطقه تنفسی جوشکاران ترقیق می نماید.
برای کار در محیط سربسته که خطر خفه شدن وجود دارد بایستی یک رسپیراتور با هوارسان خارجی به کار رود. البته مهم است به یاد داشته باشیم که برای جوشکاری در مورد کار با تمام انواع حفاظهای تنفسی بایستی تعالیم مناسب را تدارک ببینیم.

+ نوشته شده توسط امیدرضا خدابنده در یکشنبه شانزدهم خرداد 1389 و ساعت 10:30 |

Powered By